
Fast ObjectRank for
Large Knowledge Databases

Hiroaki Shiokawa
Database Group at Center for Computational Sciences,

University of Tsukuba, Japan

ISWC 2021 Research Track, October 24-28, Virtual Conference

ObjectRank

• Relevant entity search algorithm for KGs
• Given: a KG 𝐺!(𝑉!, 𝐸!,𝑊!), and a query nodes 𝑽𝒒 ⊆ 𝑽𝑫
• Return: an importance vector 𝐫 = 𝒓𝟏, 𝒓𝟐, … , 𝒓|𝑽𝑫|

𝐓,
where 𝑟) denotes a relevance between 𝑣) ∈ 𝑉! and 𝑉*

[Hiristidis, Hwang and Papakonstantinou, 2008]

Query node

?
? ?

??
?

1

Importance Computation

• Iterative Random-walk with Restart (RWR)
• ObjectRank iteratively runs the following a matrix-vector

multiplication until 𝐫 converges.

𝐫 = 𝛼𝐀𝐫 + 1 − 𝛼 𝐪

2

Efficiency Problem of ObjectRank

• Iterative RWR incurs expensive costs
• ObjectRank needs to update the importance vector for all entities

(nodes) included in 𝑉! until convergence.
• It incurs 𝑶(𝑽𝑫 + 𝑬𝑫 𝒕𝑫) time, where 𝑉! , |𝐸!| and 𝑡! are # of

nodes and edges in a KG, and # of iterations, respectively.

• Recent Semantic Web applications
• KGs are becoming larger and larger...
• In many cases, we need to handle at least |𝑉!| ≥ 10+ entities.

Can ObjectRank handle such massive KGs?

3

Goal & Contributions

• Proposed Method: SchemaRank
• Schema-aware top-k search algorithm for fast/exact ObjectRank.

• Contributions
• Efficient: Up to 644.7 times faster than SOTAs.
• Exact: Guarantees the same results as those of ObjectRank.
• Easy to deploy: Requires no user-specified parameters.
• Codes are available:

https://github.com/LazyShion/SchemaRank

How can we efficiently compute ObjectRank
without sacrificing the top-k search quality?

4

Key Observation

• The skewness in the importance distribution
• Real graphs have highly skewed importance distribution.
• The vast majority of nodes practically yield low importance.

Question Can we find such nodes with low importance
before the importance evaluation?

• ShemaRank: Schema-aware two-phase RWRs
① Coarse-grained RWR
It estimates the importance of node-types from a schema of KGs.

② Coarse-grained RWR
It incrementally prunes unpromising nodes to find top-k nodes
using the importance of node-types.

5

• Schema-level importance estimation
• Finds node-types that yield low importance score from a schema.

Coarse-grained RWR (CR)

𝐺!(a schema graph of 𝐺")

𝐫𝑺 = 𝛼𝐀𝑺𝐫𝑺 + 1 − 𝛼 𝐪𝑺
𝐫, and 𝐪, are the vectors projected from 𝐺! to 𝐺,.
𝐀, is the adjacency matrix of 𝐺,.

𝐺"

6

Important Property of CR

• 𝐫𝐒 is a good approximation of 𝐫
𝐺!(a schema graph of 𝐺")𝐺"

𝑟#$%& = 𝑟!,&()*+,+)-+

𝑟././ + 𝑟./.0 = 𝑟!,1+2,

𝑟“4# 2)5 …” + 𝑟“82-9:)+ …” = 𝑟!,;2<+,

𝑟4=:-+ + 𝑟>(? = 𝑟!,4@A9(,

7

Fine-grained RWR (FR) (1/2)

• Explores top-k important nodes on a KG using 𝐫=
• SchemaRank derives the following bounds from 𝐫,.

Lower bound of 𝑟B

Upper bound of 𝑟B

of iterations

Im
po

rta
nc

e
sc

or
e

𝑟B

𝑟B

𝑟B

8

Fine-grained RWR (FR) (2/2)

0

1

3

2

5

7

6

4

Update the bounds.

of iterations

𝑡

The upper/lower bound of 𝑟!
in the t-th iteration.

Prune unpromising nodes.

𝑟"
𝑟#
𝑟$

0 1 2 3 4 5 6 7

𝑟B Prune nodes whose upper bound is smaller
than the k-th largest lower bound.

9

Runtime Efficiency
10

How CR Effectively Works?

SchemaRank SchemaRank w/o CR
FORank

ObjectRank

11

Average Precision (Top-K)
12

Summary
• Research Question

• How can we efficiently compute ObjectRank without sacrificing
the top-k search quality on large knowledge databases?

• Proposed method: SchemaRank
• Schema-aware top-k search algorithm for fast/exact ObjectRank.

• Contributions
• Efficient: Up to 644.7 times faster than SOTAs.
• Exact: Guarantees the same results as those of ObjectRank.
• Easy to deploy: Requires no user-specified parameters.
• Codes are available:

https://github.com/LazyShion/SchemaRank

13

