
Design and Evaluation of an Example-based Graphical Manipulation
Framework for XML

Atsuyuki Morishima
Dept. of Info. Sci. and Eng., Shibaura Inst. of Tech.

Saitama, Saitama, Japan
amori@sic.shibaura-it.ac.jp

Hiroyuki Kitagawa
Inst. of Info. Sci. and Elec., Univ. of Tsukuba

Tsukuba, Ibaraki, Japan
kitagawa@is.tsukuba.ac.jp

Abstract

This paper explains a novel manipulation framework for
XML. The key idea is to choose some example XML ele-
ments existing in the database and show the system how to
manipulate them. The system then infers how to manipulate
the whole collection of XML documents. The framework is
unique in that while other approaches require users to write
(or draw) explicit query specifications in their own query
languages, ours needs implicit specifications through exam-
ple operations. The problem is challenging, because XML
documents can be semistructured data and inferring the in-
tended operation is not trivial. Our algorithm is based on
tree-style object modeling and path-expressions with wild-
cards to infer the user’s intention. The paper presents the
object modeling, its inference mechanism, and some results
of our preliminary experiments.

1. Introduction

XML has become the standard format for data exchange
and, consequently, development of query languages for
XML has become one of the hottest issues in research
and industrial communities. Well-known languages in-
clude XML-QL[6], XQuery[12], Quilt[5], XQL[10], XML-
GL[4] and XSLT[11]. They are textual or graphical lan-
guages in which we can specify queries for XML manipu-
lation. This paper explains a novel graphical manipulation
framework for XML. The key idea is to choose some ex-
ample XML elements existing in the database, and show
the system how to manipulate them. The system then infers
how to manipulate the whole collection of XML documents.
The framework is unique in that while other approaches re-
quire users to write (or draw) explicit query specifications
in their own query languages, ours needs implicit specifica-
tions through example data operations. The problem is chal-
lenging, because XML documents can be semistructured
data [1][3] and inferring the intended operation is not triv-
ial. For example, because the data structure is often irreg-
ular and implicit in semistructured data, the domain of ob-

jects an example represents cannot be fixed in advance. In
contrast, the domains are fixed in advance in QBE [13] and
other QBE-style query languages for relational databases.
In our framework, the domain is defined dynamically ac-
cording to the user’s interaction with the system. By spec-
ifying ‘another’ example, the user allows the system to ex-
tend the intended domain. This feature is essential for op-
eration of semistructured data. Our algorithm is based on
tree-style object modeling and path-expressions with wild-
cards. The contributions of this paper are as follows: (1)
We explain the XML manipulation through operations of
example data in the database, and how the system general-
izes the operations. (2) We show the results of our prelim-
inary experiments to compare our framework to XML-QL
and XML-GL, using a prototype system developed in our
project. We proposed a preliminary version of the example-
based semistructured data manipulation framework in the
context of Web view construction in [8]. The framework
presented in this paper is an extended and refined version
and directly applied to XML document manipulation. In
particular, it allows artificial examples and its semantics is
simpler and more general. We explain the details later.

The remainder of this paper is organized as follows: Sec-
tion 2 gives an example scenario. Section 3 explains how
to manipulate XML documents in our framework. Section
4 illustrates how the user interacts with the system in the
example scenario. Section 5 gives the formal semantics.
Section 6 shows the results of our preliminary experiments.
Section 7 is the conclusion.

2. Example Scenario of XML Manipulation

Suppose that we have two sets of XML documents in an
XML repository (Figure 1). The documents in the first set
contain information on academic publications (Figure 1(a)).
Each document has a list of publications for one particular
year. We assume those documents are semistructured. For
example, some documents have their publications grouped
by project (Figure 2(b)) where a pub element is a child of
a project element, while others have a flat structure (Fig-
ure 2(a)) where a pub element is a direct child of a pubs

1

(c)Publication Info. on researchers
 whose interests include database

(a)Publication Info. grouped by year (b)Profile

<pubs-r>
 <name> James </name>
 <pub>
 <authors>
 <name> James </name>
 </authors>
 <title> An XML Manipulation Scheme </title>
 <pinfo> Web Journal </pinfo>
 </pub>
 <pub>
 <authors> </authors>
 <title> Updating the Web </title>
 <pinfo> Proc. 2nd XML conf. </pinfo>
 </pub>

<pubs-r>

<pubs-r>
 <name> Vincent </name>

<pubs>
 <year> 2001 </year>
 <pub>
 <authors>
 <name>James </name>
 <name> Kathy </name>
 </authors>
 <title> An XML ... </title>
 <pinfo> Proc. 2nd... <pinfo>
 </pub>
 <pub>
 <authors>
 <name> Patrick </name>
 </authors>

 </pub>

</pubs>

<profile>
 <name> James </name>
 <room> 102 </room>
 <phone> 1234 </phone>
 <interests> DB </interests>

</profile>

<pubs>
 <year> 2000 </year> <profile>

Figure 1. Example scenario

element.
The documents in the second set contain profile informa-

tion on researchers of some research group (Figure 1(b)).
The profile information includes their names, room and
phone numbers, and their academic interests.

The requirement here is to construct another set of XML
documents, each of which corresponds to a researcher in the
research group whose interests include DB (database) and
contains the list of the researcher’s publications.

3. XML Manipulation through Example Oper-
ations

Our framework provides users with the following two
types of windows for interaction:
DataBox: A DataBox is used to display a set of XML docu-
ments in the database. Figure 3 shows example DataBoxes.
The DataBox (a) is used to display XML documents of pub-
lication information. The DataBox (b) is used to display the
profile XML documents. A DataBox shows one XML doc-
ument at a time. The user can click the Next and Previous
buttons to browse other documents. We call an XML docu-
ment in a DataBox just a page.
Canvas:The Canvas is a blank window onto which the user
can drop data objects from DataBoxes.

3.1. Drag-and-Drop, Examples and Target Sets

Figure 4 is a simple operation example1. Drag-and-Drop
is denoted by the dotted-lines. Here, we refer to the item be-

1In the figure, multiple pages are shown simultaneously in a DataBox
for explanation purposes. In reality, the Next and Previous buttons are used
to view them.

<pubs>
<year>2001</year>
<pub>
<authors><name>James</name>

<name>Kathy</name></authors>
<title>An XML manipulation..</title>
<pinfo>Proc. 2nd XML Conf.,..</pinfo>

</pub>
<pub>
<authors><name>Patrick</name></authors>
...

</pub>
</pubs>

(a) Publication list with a flat structure
<pubs>

<year>2000</year>
<project>

<pname>Web Integration</pname>
<pub>

<authors><name>Vincent</name></authors>
<title>A Language for the Web</title>
<pinfo>Web Journal ..</pinfo>

</pub>
<pub> ... </pub>

</project>
...

</pubs>
(b)Publication list with a nested structure

Figure 2. Publication Info. variations

 Name: Publication Info

Open

Next Previous

Open

Next Previous

(a)DataBox1:D1(Publication Info.) (b)DataBox2:D2(Profile)

Name: Profile

<pubs>
 <year> 2001 </year>
 <pub>
 <authors>
 <name>James </name>
 <name> Kathy </name>
 </authors>
 <title> An XML ... </title>
 :
 </pub>
 :
</pubs>

<profile>
 <name> James </name>
 <room> 102 </room>
 <phone> 1234 </phone>
 <interests> DB </interests>
 :
 :
</profile>

Figure 3. DataBoxes

ing dragged and dropped as an object. XML elements and
contents within the elements are objects. Objects dropped
onto the Canvas appear in the result.

An example is denoted by the oval. The user can des-
ignate an object as an example by selecting the “Exam-
ple” menu item that appears when the right mouse button is
clicked over the object (Figure 5) before the drag-and-drop
operation.

An example has its target set, which is the set of ob-
jects the example represents. Manipulation of an example
is interpreted as manipulation of the objects in its target set.
Objects in a target set are highlighted in each DataBox.

As a default, the target set is defined as a set of objects
which appear ‘at the same position’ on their pages as the
example object. For example, in Figure 5, the target set
would be the set of researchers’ names in the profile XML

2

James

DB

Kathy

XML

DB James DB

DataBox Canvas Result

James Kathy DB

Example Target Set of the Example

Drag and Drop

Figure 4. Manipulation of an example

 Name: Profile

<name> James </name>

<room> 102 </room>

<phone> 1234 </phone>

<interests> DB </interests>

Open

Next Previous

Example
Another
Select
Clue

Figure 5. Menu to specify examples

documents. “Another” and “Select” menu items are used to
directly modify the target set. “Clue” is used to construct
another target set, which serves as ‘clues’ to select objects
in the original target set.

The following regular expression shows the operation
procedure in our framework.

(‘Example’ (‘Another’ | ‘Select’ | ‘Clue’)∗ | ‘D&D’)∗

Here, ‘Example,’ ‘Another,’ ‘Select’ and ‘Clue’ mean selec-
tions of respective menu items on an object. The ‘D&D’ is
a Drag-and-Drop operation. We call them ‘Example,’ ‘An-
other,’ ‘Select,’ ‘Clue’ and ‘D&D’ operations. Intuitively,
our framework allows any combinations of the following
operation patterns: (a) To designate an object as an exam-
ple, and accept the default target set. (b) To designate an
object as an example, and change the default target set by
successive ‘Another,’ ‘Select’ and ‘Clue’ operations. (c) To
drag-and-drop an non-example object (an object which the
user did not designate as an example) onto the Canvas. In
this case, only the object appears in the result. (d) To drag-
and-drop an example object onto the Canvas.

If ‘Another’ operation is performed after ‘Example’ op-
eration, the target set of the example is extended to include
the ‘Another’ object and other objects that the system infers
should be included into the target set. Intuitively, the system
tries to generalize the relationship between the position of
the example and that of the ‘Another’ object, and includes
all the objects having the generalized relationship with the
example into the target set.

If ‘Select’ operation is performed after Example opera-
tion, the system makes the target set smaller by selecting
objects that meet a given condition in the target set. A win-
dow appears on the display so that the user can enter selec-
tion conditions. For example, he can enter the condition “=

‘J*.’ ” As a result, only the authors whose names start with
‘J’ become the members of the target set.

After ‘Example’ operation, the user can choose another
object and perform ‘Clue’ operation on it. The system then
constructs another target set whose example object is the
designated object. (We call it the ‘Clue’ example.) The new
target set is associated to the original target set2, and mainly
used to make the size of the original target set smaller, by
serving as a selection condition. This is done with the fol-
lowing ‘Select’ operation on the Clue example. For exam-
ple, if he specifies ‘Clue’ operation on James’s <inter-
ests>DB</interests> element, the system constructs
a new target set whose example is the <interests> el-
ement. Members of the new target set are all the <in-
terests> elements of all the researchers. Then, the user
can perform ‘Select’ operation on the James’s <inter-
ests>DB</interests> element (i.e., its ‘Clue’ exam-
ple object), and enter the condition “contains ‘DB’.” As a
result, the original target set is reduced to contain only the
names of researchers whose interests include “DB.”

3.2. Associations

When the user specifies multiple examples (and their tar-
get sets), there are usually associations among them. If an
association occurs among target sets, only particular com-
binations of objects are qualified to be manipulated. There-
fore, an association serves as a kind of join condition. Our
framework supports two types of associations.

The first is structural association (S-Association). Two
examples have an S-Association when their positions have
some special relationship. One of the simplest cases is
that two different examples on the same page imply an S-
Association that two objects taken from their two target sets
are related with each other only if they are on the same
page. Suppose that the user wants to restructure pages in
the DataBox in Figure 6 so that the name and his interests
are arranged side by side. If the user takes example ob-
jects as in Figure 6, the system considers that there is no
S-Association between the objects of the two target sets.
Therefore, all combinations (Cartesian product) of two ob-
jects, one from target set A and the other from B, appear in
the result. In contrast, if he takes examples as in Figure 7,
an S-Association is implied and he gets the intended result.

The second type of association is value association (V-
Association). Two examples have a V-Association when
their values are the same. Suppose that we have two
DataBoxes (Figure 8), and that the user wants a set of
pages, each of which contains a researcher’s name, his
room number, and his interests. If the user takes exam-
ples like those in Figure 8, a V-Association occurs and he
gets the intended result. (Note that target sets A and B

2Its default target set is defined according to the original target set. De-
tailed discussion is given in Subsection 5.2.

3

James

DB

Kathy

XML
James XML

James DB Kathy

DataBox Canvas Result

James

DB

Kathy XMLXML

A

B

Figure 6. No S-Association

James

DB

Kathy

XML

James DB Janes DB Kathy XML

DataBox Canvas Result

S-Association

A

B

Figure 7. S-Association between A and B

have S-Association, and so do target sets C and D.) How-
ever, if he specifies ‘Patrick’ as an example for target set
C, a V-Association does not occur and the system computes
Cartesian product. The result would be { (James, Rm102,
CG), (James, Rm102, DB), (Patrick, Rm205, CG), (Patrick,
Rm205, DB)}.

3.3. Examples Given by Users

The scenario in Section 2 is an example of restructur-
ing XML documents. There are other scenarios where the
main purpose is querying. In querying scenarios, finding
‘actual’ examples in the DataBox is often difficult, because
the number of the data objects the user wants may be very
small. Our system provides a mechanism to support those
kinds of scenarios, which allows the user to show the system
‘artificial’ (imaginary) examples, as in QBE. Figure 9 gives
an example. When the user chooses a menu item (omitted
in the figure), the DataBox presents a blank area. The user
can then describe an artificial example and drag and drop it
onto the Canvas to show what the system is to do. The user
can manipulate the artificial example as if it were an ‘ex-
isting’ example. For example, he can perform “Clue” and
“Select” operations on the value “215” in Figure 9 and drag
and drop the value “Peggy” into the Canvas. The system
will select the person whose room no. is 215. Note that the
name does not have to be “Peggy,” because the user did not
declare any selection condition on that value.

4. Interaction with the System in the Example
Scenario

Figure 10 illustrates operations to get the required result
in the example scenario given in Section 2. We assume here
that DataBoxes D1 and D2 contain all the publication infor-
mation pages and the researcher profile pages, respectively.
The operation sequence is as follows:

James

Rm102

Patrick

Rm205

James

DB

Janes

DB

DataBox 1 Canvas Result

James

DB

Patrick

CG

Rm102 Rm102

Patrick

Rm205

CG
V-Association

S-Association

S-Association

A

B

C

D

DataBox 2

Figure 8. V-Association between A and C

 Name: Profile

<profile>

<name> Peggy </name>

<room> 215 </room>

</profile>

Open

Next Previous

Figure 9. ‘Artificial’ example given by the user

(1) Designate ‘<name>James</name>’ in D1
as an example. The default target set includes author
names which appear first in publication list pages
having the structure shown in Figure 2(a). Next,
specify that each of ‘<name>Kathy</name>’ and
‘<name>Patrick</name>’ in D1 is an ‘Another’
object. Then, press the Next button of the DataBox D1 to
find the publication page of year 2000, and specify that
‘<name>Vincent</name>’ on the page is an ‘Another’
object. (Alternatively, you can use another page which
has the structure shown Figure 2(b).) The system uses
rules to generalize the relationship between positions of
‘<name>James</name>,’ ‘<name>Kathy</name>,’
‘<name>Patrick</name>’ and ‘<name> Vincent
</name>,’ so that the target set of this example is extended
to include all author names.

(2) D&D the “<name>James</name>” from D1 onto
the Canvas.

(3) Designate the ‘<name>James</name>’ object
in D2 as an example. Note that the two target sets of
‘<name>James</name>’ objects in D1 and D2 have V-
Association. Therefore, this specifies an equi-join between
their target sets.

(4) Then designate the <interests> ele-
ment in D2 as the ‘Clue’ example for the example
‘<name>James</name>’ in D2.

(5) Perform ‘Select’ operation on the ‘Clue’ example and
enter the condition “contains ‘DB’ ” so that the target set
of the example ‘<name>James</name>’ in D2 includes
only the names of researchers with their interests including
“DB”.

(6) Designate the ‘<pub>’ element in D1 as an example.
D&D it onto the Canvas.

4

 Name: Publification...

Open

Next Previous

<pubs>
 <year> 2001 </year>
 <pub>
 <authors>
 <name>James </name>
 <name> Kathy </name>
 </authors>
 <title> An XML ... </title>
 <pinfo> Proc. 2nd... </pinfo>

 </pub>
 <pub>
 <authors>
 <name> Patrick </name>
 </authors>
 </pub>

</pubs>

 Name: Profile

Open

Next Previous

<profile>
 <name> James </name>
 <room> 102 </room>
 <phone> 1234 </phone>
 <interests> DB </interests>

</profile>

(a)DataBox1:D1 (Publication Info.) (b)DataBox2:D2 (Profile)

<pubs-r>
 <name> James </name>
 <pub>
 <authors>
 <name> James </name>
 <name> Kathy </name>
 </authors>
 <title> An XML Manipulation Scheme </title>
 <pinfo> Proc. 2nd... </pinfo>

 </pub>
<pubs-r>

Create

XML

3.

4. 5.

8.

1.

6.

2.
7.

Figure 10. Manipulation for the scenario

(7) Put the repetition mark (*) on the dropped <pub>
object. As a result, all of his publications are listed in this
page. Otherwise, a new page is produced for each publica-
tion. Essentially, the repetition mark works as Nest operator
of the nested relational algebra [7]. Subsection 5.4 contains
details.

(8) Press the ‘Create’ button on the Canvas.

5. Semantics

This section defines the formal semantics of our frame-
work in terms of the predicate logic and the nested relational
algebra [7]. The major refinement compared to the prelimi-
nary one given in [8] is twofold:

(a) It treats example objects and ‘Clue’ examples in a uni-
fied way.

(b) It distinguishes between element contents and XML
elements.

Refinement (a) gives a simpler and more general scheme.
For example, operation of selecting objects in a target set is
orthogonal to specifying a ‘Clue’ example: A ‘Clue’ exam-
ple is now a kind of example object and has no different
formalization. Also, the size of a target set can be reduced
directly through explicit selection conditions on its example
object. In addition to the refinements, artificial examples are
permitted.

We define the formal semantics in the following three
steps: (1) We express the source XML data as an object
tree. (2) We derive the target relation from the user’s ex-
ample operations. The target relation represents target sets

PAGE.1

D.1

pub.1

authors.1

name.2

pinfo.1

name.1
Pinfo.1

PAGE.2

D.2

PAGE.1 PAGE.2

"James"

"An XML..."

"An Integration..."

"Web Journal..."

name.1

"James"

Room.1

"102"

Phone.1

"1234"

Interests.1

"DB"

"Kathy"

&11

&15

&12

title.1

Project.1

pname.1

pub.2
"Web Interration"

pub.1

authors.1 title.1

name.1
&18

&42 &52

Project.2

&30

year.1

"2000"

pub.2

year.1

"2001"

"proc..."

PAGE.3

profile.1

title.1

"Updating the Web..."

authors.1

name.1

authors.1

pinfo.1

name.1

&17

title.1
"proc..."

pubs.1
pubs.1

"James"
"Vincent""Patrick"

Figure 11. Tree object model of the XML data

and their associations. (3) We restructure the relation into a
nested structure that reflects the grouping specified by rep-
etition marks on the Canvas.

5.1. Data Modeling
We represent the source XML data as an object tree. The

tree in Figure 11 represents a part of the source data in the
example scenario. Every node (object) is annotated with a
label, which consists of a label name and a label number.
The second level nodes (children of the root of the whole
tree) correspond to DataBoxes. The third level nodes, la-
beled with ‘PAGE.i,’ correspond to pages. Label numbers
are sequentially assigned to sibling nodes with the same la-
bel name. Labels for leaves (T.1) is omitted in the figure.
Every object has an OID. Several OIDs are explicitly pre-
sented in the form of &n for explanatory purposes. Note
that this is semistructured data. There are two kinds of pub-
lication pages whose structure are different from each other:
A ‘<pub>’ element may be a direct child of a ‘<pubs>’
element or placed under a ‘<project>’ element.

Artificial examples given by users are attached as sub-
trees to the tree structure. A “PAGE.i” object is added to
each subtree’s root and the subtree (whose root is now the
“PAGE.i” object) is attached to a DataBox (i.e. “D.i” ob-
ject) where the user wrote the artificial example.

In the following discussion, <n> and <i> are abbre-
viations for <name> and <interests>, respectively.
Also, path(o) and value(o) denote the path from the
root to the object o, and the value of o, respectively.
For example, path(&11) =D.1→PAGE.1→pubs.1 →pub.1
→authors.1→name.1, and value(&11) = “<n>James
</n>.”

5.2. Target Sets
Each example object has a corresponding target set.

Given an example e, its target set (denoted by TSe) is de-
fined as follows:

TSe = {o|o ∈ O ∧ C-Prede(o)},

5

Wildcard What to match with

Name.? A node with label name Name
? A node with any label
?* Any sequence of any nodes (the length can be 0)

Figure 12. Wildcards

where O is the set of all the objects in the object tree, and
C-Prede(o) is a candidate predicate incorporating a path
expression. A path expression is similar to a path but may
contain wildcards. C-Prede(o) holds if and only if path(o)
conforms to the path expression. C-Prede(o) is determined
by the ‘Example’ and ‘Another’ operations as shown below.

Example

The following TS&11 gives the target set specified by Op-
eration (1) in Section 4.

TS&11 = {o| o ∈ O ∧ D.1→PAGE.?→pubs.1→?*→pub.?
→authors.1→name.?[o]}

Wildcards considered in the paper are listed in Fig-
ure 12. Given the source data shown in Figure 11,
TS&11 = {“<n>James</n>”, “<n>Kathy</n>”,
“<n>Patrick</n>”, . . . , “<n>Vincent</n>”, . . .}
(all authors in the publication pages).

Derivation of the Candidate Predicate for an Example’s
Target Set

In the derivation process, we add annotations to predicates
to give information on path(e) and value(e). Annotations
are surrounded by “〈” and “〉”. We represent the null se-
quence as ε.

For example, specification of TS&11 with annotations is
as follows:

TS&11 = {o| o ∈ O ∧ D.1→PAGE.?〈PAGE.1〉 →pubs.1
→?*〈ε〉 →pub.?〈pub.1〉 →authors.1
→name.?〈name.1〉[o〈<n>James</n>〉]}

Note that the annotations give information on path(&11)
and value(&11).

In general, C-Prede(o) is derived as follows:
(1) First, when the user specifies that the object e is

an example, the default candidate predicate p[o〈v〉] is
derived. Here, p is the same as path(e) except that
its PAGE.i is replaced by PAGE.?〈PAGE.i〉, and v is
value(e). For example, consider Operation (1) in Section
4. When the user specifies the object &11 (with its value
“<n>James</n>”) as an example, the default candidate
predicate derived is D.1→PAGE.?〈PAGE.1〉→ pubs.1→
pub.1 → anthors.1→name.1[o〈<n>James</n>〉]. The
predicate defines the set of objects appearing at the same
position on different pages (i.e. the default target set).

(2) An ‘Another’ operation modifies the candidate pred-
icate to accept the ‘Another’ object. Modification rules
shown in Figure 13 are used. Each rule prescribes how
to modify the original predicate according to path(e) and
path(a), where e and a are the example and an ‘Another’
object, respectively. In Figure 13, B and C denote label
names, qi denotes a partial path, and pi denotes the partial
path expression of the original predicate to which qi con-
forms. q′i is a partial path that pi can accept. The basic idea
behind the rules is to place a wildcard at the position where
path(e) and path(a) conflict with each other.

For example, in Operation (1), the user specifies
the object &12 (with its value “<n>Kathy</n>”)
as the first ‘Another’ object. Then, path(a) =
D.1→PAGE.1→pubs.1→pub.1→authors.1→name.2.
We can obtain path(e) = D.1→PAGE.1→ pubs.1 →
pub.1 → authors.1→name.1 from the annotated default
candidate predicate. The system finds that the default
candidate predicate cannot accept path(a) because name.1
in the path expression conflicts with name.2. In this
case, they conflict at their label numbers. Therefore, we
can apply Rule 1, and get D.1 → PAGE.? 〈PAGE.1〉
→ pubs.1 → pub.1 → authors.1 → name.?〈name.1〉
[o〈<n>James</n>〉]. Next, the user specifies the objects
&17 (with its value “<n>Patrick</n>”) and &18 (with
its value “<n>Vincent</n>”) as the second and third
‘Another’ objects. In a similar way, we can apply Rule 1
and Rule 3 to the modified predicate. This results in the
above TS&11.

Derivation of the Candidate Predicate for an Clue’s Tar-
get Set

Operations (3) and (4) in Section 4 construct the following
new target set for the ‘Clue’ example.

TS&52 = {o| o ∈ O ∧ D.2→PAGE.?〈PAGE.1〉→profile.1
→interests.1[c〈<i>DB</i>〉]}

Let C-Predcl(c) be the candidate predicate of the ‘Clue’
example cl for an example object e. (We call e the
target example here. In this case, &42 with its value
‘<n>James</n>’ is the target example for the ‘Clue’ ex-
ample &52 with its value ‘<i>DB</i>’.) The system
determines C-Predcl(c) using C-Prede(o), path(e) and
path(cl) as follows:

(1) Let P be the predicate ‘p[c〈v〉]’ where p is path(cl).
For example, consider Operation (4) in Section 4. Then, P
=D.2→PAGE.1→ profile.1→ interests.1[c〈<i>DB</i>〉].
Note that P holds if and only if c is the ‘Clue’ example cl
itself. Also, let Pe be the candidate predicate for the target
example e. (That is, C-Prede(o).) In Operation (4), Pe =
D.2→PAGE.?→ profile.1→ name.1[o〈<n>James</n>〉].

(2) Find the longest prefix partial path expression pe

of Pe such that path(e) and path(cl) share the same par-

6

Original Pred. Path(e) Path(a) Modified Pred.

Rule 1 p1 B.i p2[e〈v〉] q1 B.i q2 q′1 B.k(�= i) q′2 p1 B.?〈B.i〉 p2[e〈v〉]
Rule 2 p1 B.i p2[e〈v〉] q1 B.i q2 q′1 C(�= B).k q′2 p1 ?〈B.i〉 p2[e〈v〉]
Rule 3 p1 q3 p2[e〈v〉] q1 q3 q2 q′1 q4(�= q3) q′2 p1? ∗ 〈q3〉 p2[e〈v〉]

Figure 13. Rules to modify candidate predicates. (pi, qi and q′i can be ε.)

tial path in the range of pe. In Operation (4), pe =
D.2→PAGE.?→profile.1. Then, the C-Predcl(c) is de-
rived from P by replacing the corresponding prefix part
of P with pe. Therefore, C-Predcl(c) =D.2→PAGE.?→
profile.1→ interests.1[c〈<i>DB</i>〉]. In the above ex-
ample, the predicate holds if and only if c is an <i> (<in-
terests>) element of some researcher on profile pages.

Select Operation on a Target Set

If ‘Select’ operation is performed on an example (or ‘Clue’
example) object, a selection condition predicate is inserted
into the target set definition. For example, Operation (5)
modifies the target set of the ‘Clue’ example (<i>DB</i>)
as follows:

TS&52 = {o| o ∈ O ∧ D.2→PAGE.?〈PAGE.1〉→profile.1
→interests.1[c〈<i>DB</i>〉]∧c contains ’DB’}

5.3. Target Relation
A target relation represents the target sets of examples

and the associations among them.

Definition

Assume that there are n target sets (specified by exam-
ples e1, . . . en, including Clue examples), and l associations
among them. Then, the target relation is defined as follows.

TR = { (value(o1), . . . , value(on)) |
o1 ∈ O ∧ C-Prede1(o1) ∧ S-Prede1(o1)
...
∧on ∈ O ∧ C-Preden(on) ∧ S-Preden(on)
∧A-Pred1(oa1 , ob1) ∧ . . . ∧ A-Predl(oal , obl)},

where A-Predi is an S-Association predicate or V-
Association predicate, and S-Predei corresponds to a se-
lection condition specified in ‘Select’ operation (it is ‘True’
when no ‘Select’ operation is done for the target set). S-
Association predicate has the form Sharep(o, o′). It holds
if and only if path(o) and path(o′) share the same par-
tial path which starts from the root and conforms to the
path expression p. Figure 14 illustrates the meaning of
ShareD.2→PAGE.?→profile.1(oi, oj). V-Association pred-
icate has the form o

v= o′, and holds if and only if
value(o) = value(o′).

The scheme to derive V-Association and S-Association
predicates is the same as the preliminary version in [8]. We

D.2

PAGE.1

PAGE.2

Profile.1

name.1

Room.1

phone.1

"James"

"102"

"1234"

interests.1

"DB"

X

Figure 14. An object set X such that (∀oi∀oj ∈
X)ShareD.2→PAGE.?→profile.1(oi, oj).

explain the basic idea here. V-Association predicates are
derived in a straightforward way: They are determined by
the values of example objects. S-Association predicates are
determined by paths of example objects and their candidate
predicates: If two example objects e and e′ share the same
prefix path, and the corresponding path expressions (includ-
ing wild cards) are the same, then the system infers that the
user wants to associate an object o in one target set with o′

in the other target set when they share the partial path in the
same way as e and e′.

Example

The target relation for the example scenario is shown in
Expression A. A superscript number indicates an operation
number in Section 4 to which the predicate corresponds.

{(value(o1), value(o2), value(o3), value(c1))|
o1 ∈ O ∧ p1→authors.1→name.?〈name.1〉[o1〈<n>James</n>〉](1)
∧o2 ∈ O ∧ p1[o2〈<pub>...An XML...</pub>〉](6)
∧o3 ∈ O ∧ p2→name.1[o5〈<n>James</n>〉](3)
∧c1 ∈ O ∧ p2→interests.1[c1](4) ∧ c1 contains “DB”

(5)

∧Sharep2(o3, c1)
(4) ∧ Sharep1 (o1, o2)(6) ∧ o1

v
= o

(3)
3 }

where

p1 = D.1→PAGE.?〈PAGE.1〉→pubs.1→?*〈ε〉→pub.?〈pub.1〉, and
p2 = D.2→PAGE.?〈PAGE.1〉→profile.1.

Expression A. Specification of the target relation

Figure 15 shows all the target sets and associations in-
volved in the example scenario. Figure 16 shows the target
relation based on the target sets and associations.

5.4. Creating the Nested Structure
Creation of the nested structure reflecting the specified

grouping is straightforward. It depends on the position of
examples and repetition marks (*) on the Canvas. Figure 17

7

Ex.<n>James</n>
in D1

Ex.
<pub>..An XML..</pub>
in D1

Ex.<n>James</n>
in D2

Ex. “<i>DB</i>”
in D2

<n>James</n> <pub>..An XML..</pub> <n>James</n> <i>DB</i>
<n>James</n> <pub>..Updating..</pub> <n>James</n> <i>DB</i>
<n>Vincent</n> <pub>..An Integration..</pub> <n>Vincent</n> <i>Automata, DB</i>

Figure 16. Target relation

James

Vincent

James

Vincent

DB

Automata
 DB

"<pub>..An integration..</pub>"

"<pub>..An XML ..</pub>"

"<pub>..Updating the Web..</pub>"

D1: D2:

Example

Target Set

S-Association

V-Association

Figure 15. Target sets and associations

<n> James </n>

<pub>...An XML...</pub>

Figure 17. Grouping specification

shows the grouping structure specified on the Canvas shown
in Figure 10. The nested relation is constructed by apply-
ing Projection and Nest operators [7]. In this example, the
following expression produces the nested relation shown in
Figure 18.

νV =(<pub>..AnXML..</pub>)(π<n>James</n>,<pub>..AnXML..</pub>(TR))

The system outputs the result in the form of XML docu-
ments (Figure 1(c)).

6. Experiments
We conducted preliminary experiments to examine the

usability of our framework; we used our prototype system
named AQUA [9] (Figure 19) for the experiments. The sys-
tem is implemented in Java (Java2 SDK1.3) and utilizes its
drag and drop API. The code is about 21,000 lines. XML-
QL and XML-GL were used for comparison. Relationships
are given in Figure 20.

6.1. Method

We recruited 18 people and divided them into three
groups according to their skills and database-related knowl-
edge. Members of Group A had no knowledge of concepts
related to databases. People in Group B had knowledge
of relational databases and SQL. People in Group C had
knowledge of XML-QL in addition to database concepts.

We asked them to compose queries using XML-QL,
XML-GL and AQUA, and observed their specification pro-
cess and results. In the experiment, we used the AQUA pro-
totype system and the XML-QL prototype implementation

V
Ex.<n>James</n>
in D1

Ex. <pub>..An XML..</pub> in D1

<pub>..An XML..</pub>
<n>James</n> <pub>..Updating..</pub>

<n>Vincent</n> <pub>..An Integration..</pub>

Figure 18. Result nested relation

Figure 19. AQUA prototype system

obtained from the AT&T-Labs web-site[16]. We did not
have an operational XML-GL system when we conducted
the experiment. Therefore, we constructed an XML-GL en-
vironment by preparing XML-GL query components in a
commercial drawing tool so that users could drag and drop
them to specify queries. To make a fair comparison pos-
sible, we did not allow users to execute queries. For each
framework, we handed them a manual of the framework and
gave them a tutorial for 20 minutes. We then asked them
to compose queries to manipulate XML documents in the
framework.

The set of XML documents to be manipulated were
real XML documents (selected from XML documents
of publications information in DBLP[14] and SIGMOD
Record[15]). The set of documents forms semistructured
data, because they have the same tags in part but differ in
their DTD structure. For each framework, we asked them
to give queries to meet the following requirements:
Q1: Construct a set of XML documents, each of which has
the title of a publication.
Q2: Construct a set of XML documents, each of which has
a combination of the title of a SIGMOD Record paper and

8

CUI GUI
Explicit specification in
query languages

XML-QL XML-GL

Implicit specification Our Framework
through examples (AQUA)

Figure 20. Relationship among frameworks

one of its authors.
Q3: Construct an XML document that has a list of titles of
publications grouped by author.

In the experiment, we changed the order of the three
frameworks for each person so that the order would not af-
fect the results as a whole. We measured the time required
to compose queries and checked the percentage of correct
queries. Participants were allowed to refer to the tutorial
manuals during the test. After the test, we asked them to an-
swer questionnaires to check usability of each framework.

6.2. Results and Discussions

(1) Time: Tables 1 to 3 list the average query composition
time (in seconds) and the proportion of correct answers (the
number of correct answers/people) in Q1, Q2 and Q3. For
Q1 and Q2, the order in terms of time is AQUA<XML-
GL<XML-QL (Figure 21). However, for Q3, the time with
XML-QL is shorter than that for XML-GL. The reason is
that some of the participants were familiar with XML-QL.
(They are in Group C.)

We performed an analysis of variance and a Tukey’s mul-
tiple comparison test using the type of specification frame-
work as its factor to see if there is a significant difference
among the three frameworks. As a result, we found that the
difference between our framework and XML-GL (or XML-
QL) was statistically significant at the level of 1%. This
means that the time required to compose queries with our
framework is clearly shorter compared to other frameworks.
(2) Percentage of correct answers:The tables show that,
regarding the percentage of correct answers, the order is
AQUA>XML-QL>XML-GL. But there is only a small dif-
ference and we did not find any statistical significance in the
experiment. The reason for the high percentages in general
is that the requirements in this experiment were not so dif-
ficult. We did not count mistakes related to misspelling in
XML-QL and XML-GL.
(3) Usability: We asked participants to give usability scores
between -5(the most difficult) and +5(the easiest) to XML-
GL and our framework, assuming that the usability score of
XML-QL is 0. The order of the frameworks based on the
score is AQUA>XML-GL>XML-QL (Figure 22).

We performed an analysis similar to the one we did with
the query composition time. The specification framework
and the group were considered as factors in the analysis. As
a result, we found that the difference between our frame-

Group A Group B Group C Average
AQUA 72s 36s 40s 49s

(6/6) (5/6) (6/6) (17/18)
XML-GL 74s 61s 67s 67s

(5/6) (6/6) (6/6) (17/18)
XML-QL 200s 74s 113s 129s

(5/6) (6/6) (6/6) (17/18)

Table 1. Result of the experiment (Q1)

Group A Group B Group C Average
AQUA 87s 55s 55s 66s

(5/6) (6/6) (6/6) (17/18)
XML-GL 197s 141s 183s 173s

(5/6) (6/6) (6/6) (17/18)
XML-QL 343s 175s 176s 231s

(3/6) (4/6) (6/6) (13/18)

Table 2. Result of the experiment (Q2)

work and XML-GL (or XML-QL) was statistically signifi-
cant at the level of 1%. This means that our framework was
clearly easier than XML-GL and XML-QL in the experi-
ment. On the other hand, there was no significant differ-
ence between different groups. This shows our framework
was evaluated highly regardless of participants’ knowledge
on databases and XML-QL.

Possible reasons for the AQUA’s high usability include
(a) Manipulation of actual data instances and the system’s
direct reaction for the manipulation enable users to see what
they are doing, and (b) The users do not have to learn un-
familiar concepts, such as regular path expressions. Basi-
cally, AQUA’s superiority over the others can be discussed
from those two perspectives. In other words, AQUA has
advantages in terms of (a) the interactive support given by
the implemented environment, and (b) the conceptual sim-
plicity. It is possible, for example, that XML-QL’s usabil-
ity score would be higher if we provide users with a tool
to help write XML-QL queries, instead of allowing them
to use only a text editor. However, we would not expect
the other frameworks to get a higher score than AQUA, be-
cause AQUA holds the advantage of simplicity. Here, we
must note that AQUA is designed for naive end-users, and
that we assume in the discussion that they are main users.
Therefore, the discussion would change if they were expe-
rienced users, who would prefer to use a small number of
‘abstract concepts’ rather than show a large number of ex-
amples.

7. Conclusion
In this paper, we have explained a graphical manipula-

tion framework of XML documents. It is unique in that
users implicitly specify XML manipulation through exam-
ple operations of data existing in the database, while other
approaches require them to code explicit specifications in
textual and graphical languages. The results of our prelim-

9

Group A Group B Group C Average
AQUA 62s 46s 49s 52s

(5/6) (6/6) (6/6) (17/18)
XML-GL 245s 238s 205s 229s

(5/6) (5/6) (5/6) (15/18)
XML-QL 323s 160s 146s 210s

(6/6) (5/6) (6/6) (17/18)

Table 3. Result of the experiment (Q3)

Figure 21. Average time

inary experiments show that our framework is promising
and has high usability even for naive end-users having no
knowledge of concepts related to databases and query lan-
guages.

Given the results showing it is a promising approach, our
current interest is expressive power analysis. Particularly,
we are interested in elaborating the algorithm so that we can
show some completeness. One direction we are now tak-
ing is to take advantage of results in computational learning
theory[2]. Another interesting task is to extend the frame-
work to accept a DTD and produce a template on the Can-
vas. The template will help users to decide where objects
are to be dropped. We also plan to implement translators
that output queries in popular XML query languages instead
of queries for our proprietary XML query engine.

Acknowledgements

The authors are grateful to many people who have con-
tributed to the development of AQUA and its experimental
evaluation. Special thanks are due to Mr. Seiichi Koizumi
and Mr. Satoshi Takano. They also thank Nipppon Televi-
sion Network Corporation for providing part of sample data.
This work has been supported in part by the Grant-in-aid for
Scientific Research from Japan Society for the Promotion of
Science.

References

[1] S. Abiteboul. Querying semi-structured data. Proc. 6th In-
ternational Conference on Data Theory (ICDT’97), pp. 1-
18, 1997.

Figure 22. Usability scores

[2] D. Angluin. Computational Learning Theory: Survey and
Selected Bibliography. Proc. 24th Annual ACM Symposium
on Theory of Computing, pp. 351-369, 1992.

[3] Peter Buneman. Semistructured data. Proc. 16th ACM Sym-
posium on Principles of Database Systems (PODS’97), pp.
117-121, 1998.

[4] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi,
and L. Tanca. XML-GL: a Graphical Query Language for
Querying and Restructuring XML Documents. 8th Interna-
tional World Wide Web Conference (WWW8) 1999.

[5] Don Chamberlin, Jonathan Robie, and Daniela Florescu.
Quilt: an XML Query Language for Heterogeneous Data
Sources. Proc. WebDB’00, 2000.

[6] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
and D. Suciu. XML-QL: A query language for XML.
Proc. QL’98 - The Query Languages Workshop,
http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[7] P. C. Fischer and S. J. Thomas. Operators for non-first-
normal-form relations. Proc. IEEE COMPSAC83, pp. 464-
475, 1983.

[8] A. Morishima, S. Koizumi and H. Kitagawa. Drag and Drop:
Amalgamation of Authoring, Querying, and Restructuring
for Multimedia View Construction. Proc. 5th IFIP 2.6 Work-
ing Conference on Visual Database Systems(VDB5), pp.
257-276, 2000.

[9] A. Morishima, S. Koizumi, H. Kitagawa, and S. Takano.
Enabling End-users to Construct Data-intensive Web-sites
from XML Repositories: An Example-based Approach.
Proc. 27th VLDB Conf., pp. 703-704, 2001.

[10] J. Robie, J. Lapp, D. Schach. XML Query Language (XQL).
http://www.w3.org/TandS/QL/QL98/.

[11] W3C. XML Transformations (XSLT). http://www.w3.
org/TR/xslt.

[12] W3C. XQuery 1.0: An XML Query Language. X3C Work-
ing Draft, http://www.w3.org/TR/, 2001.

[13] M. M. Zloof. Query-by-Example: a Data Base Language.
IBM Systems Journal, Vol. 16, No. 4, pp. 324-343, 1977.

[14] DBLP XML Records. http://www.informatik.uni-
trier.de/ ley/db/about/dallas-usage.html

[15] ACM SIGMOD Record: XML Version. http://www.
acm.org/sigmod/record/xml

[16] XML-QL: A Query Language for XML. User’s Guide.
http://www.research.att.com/ mff/xmlql/doc/

10

