
Algebraic Service Specification and Rule Generation
for Integrating Multiple Dissemination-Based

Information Sources

Hiroyuki Kitagawa†, Tomoyuki Kajino††, and Yoshiharu Ishikawa†

†Institute of Information Sciences and Electronics, University of Tsukuba

††Master’s Program in Sciences and Engineering, University of Tsukuba

February 2001

ISE–TR–01–177

Abstract

Integration of heterogeneous information sources has been one of important data
engineering research issues. Various types of information sources are available
today. They include dissemination-based information sources, which actively and
autonomously deliver information from server sites to users. We have been de-
veloping a mediator/wrapper-based information integration system, in which we
employ ECA rules to enable users to define new information delivery services
integrating multiple existing dissemination-based information sources. However,
it is not easy for users to directly specify ECA rules and to verify them. In this
paper, we propose a scheme to specify new dissemination-based information de-
livery services using the framework of the relational algebra. We discuss some
important properties of the specification, and show how we can derive ECA rules
to implement the services.

1

1 Introduction

The recent development of network technology has enabled us to access vari-
ous information sources easily. Due to the need for the integration facility of
heterogeneous information sources, information integration (mediation) has been
one of important data engineering research issues [5, 6, 9, 14]. Although the
technological advance has made it possible to integrate existing heterogeneous
information sources, we still have to cope with a new kind of information source
- dissemination-based information sources[1, 8, 11, 17]. They actively and au-
tonomously deliver information from server sites to clients. Therefore, users can
receive up-to-date information automatically, and do not have to worry about
where the information is located or when they are updated.

We have been developing a mediator/wrapper-based information integration
system named InfoWeaverwhich integrates various information sources includ-
ing dissemination-based information sources [9, 12, 14]. InfoWeaver provides
two types of features regarding the information dissemination: (1) Integration of
dissemination-based information sources and (2) Dissemination-based delivery
of the integration result. The former enables user-specified selection of the deliv-
ered information and integration with other information sources such as relational
databases and Web pages. The latter enables effective delivery of the integrated
data from the integration system based on the timing requirement specified by
users. For example, it is possible to extract interesting portions from the dis-
seminated information, integrate them with data in relational databases, and then
periodically deliver the integration results to users using the dissemination facil-
ity.

These features require “active” facilities such as event handling and support
for timing constraints. Namely, data storage, integration, and delivery need to
be performed actively, triggered by events such as arrival of new data and time
progress. To realize this, we have employed ECA rules [15]. Users can define
new information delivery services, if they add appropriate ECA rules to the sys-
tem.

However, it is not an easy task for users to specify ECA rules. Moreover,
ECA rules are related with each other, and it is difficult to check their consis-
tency. For example, when more than one information delivery services are de-
fined on the same dissemination-based information sources, verification of ECA
rules becomes very complicated.

An approach to this problem is to provide a framework in which users can
specify their integration and delivery requirements in a more declarative manner.
In this paper, we propose a specification scheme based on the relational algebra,
employing the relational model as a common model at the mediator level. In the
scheme, information sources including dissemination-based sources are modeled

2

as relations, and new information delivery services are specified using relational
algebra-based expressions. Then, consistency of the specifications is checked,
and ECA rules to realize the user requirements are derived from algebra-based
expressions, and the integration system provides the information delivery service
by executing the ECA rules. The relational algebra-based specification scheme
proposed here provides a sound basis on top of which more declarative and user-
friendly specification schemes can be developed. (They may be based on SQL
and GUI.)

The remaining part of this paper is organized as follows. In Section 2, we
show a simple example of a new information delivery service integrating multi-
ple existing dissemination-based information sources. Mediator/wrapper-based
integration system architecture assumed in this paper is shown in Section 3. Sec-
tion 4 describes ECA rules employed in our approach. In Section 5, we show how
dissemination-based information sources are modeled as relations, and present a
framework to specify new information delivery services based on the relational
algebra. In Section 6, we discuss some properties to verify the given specifica-
tions. In Section 7, we show how we can derive ECA rules to implement the
services from them. Section 8 mentions related works. Section 9 presents the
conclusion and future works.

2 Integration Example

In this section, we show a simple integration scenario. We define a new infor-
mation delivery service integrating dissemination-based information sources and
a relational database (Figure 1). We assume that there exist two dissemination-
based information sources:

1. Industrial news service (INews): This source sends industrial news articles
to the clients using e-mails. Each e-mail message contains data items such
as the company name, news header, and contents.

2. Stock price information feed service (SPrice): This source provides the
closing stock price information over the Internet. It is delivered once a
day on a per-company base. Namely, it sends a record that consists of the
company name, its category of business, and the closing stock price of the
day.

In addition to these dissemination-based information sources, we assume the
following relational database:

3

3. Stockholder’s information database (StockholderInfo): This database con-
tains a relation that manages the information of the stock items that a stock-
holder owns. The relation has attributes such as the company name, the
purchase price, the number of stocks, and a threshold price value specified
by the owner. (How it is used is described below.)

RDB

StockholderInfo

INews SPrice

<Header>The
<Contents>...

.....

<Name>A
<INews> CName : A

Price : 9500
Category : IT

<News>
 <Company> ...
 <Price>...
 <Contents>...
</News>

CompanyPurchasePrice ...

Figure 1: Integration Example

Here, we suppose a user owns stocks of companies in the IT category, and
their information is stored in the Stockholder’s information database. To show an
information integration example, assume that the user has the following demands:

� When a new closing stock price for an IT category company has arrived,
check it and send a notification message to the user if it exceeds its thresh-
old value. The threshold value is specified by the user for each IT stock
item and stored as an attribute value in the Stockholder’s information
database.

� The notification message should include the closing stock price, company
name, and news contents related with the company extracted from the in-
dustrial news articles delivered in the last two days.

� The notification should be sent to the user at midnight on the day.

The above demands can be met by defining a new information delivery ser-
vice in which notification messages generated from data in the underlying three
information sources are periodically sent to the user. We show how this require-
ment is specified in our scheme in Section 5. In Section 7, we present how to
derive ECA rules to implement the service from the specification.

4

3 Integration Architecture

In our research, we assume a mediator/wrapper-based information integration
system architecture [9, 12, 14]. The relational model is used here as a common
data model at the mediator level. To cope with data incoming from dissemination-
based information sources, we allocate wrappers, named DIS wrappers, to
dissemination-based information sources in addition to wrappers for relational
databases and Web pages. This system integrates data from the underlying infor-
mation sources, triggered by events such as arrival of new data and time progress.
The integration results can be actively delivered from the system to users through
new dissemination-based information services. (The integration results can also
be obtained by conventional queries. This portion is out of the scope in this pa-
per.)

Client

Dissemination
module

Rule processing
module

Dissemination-based information source

Delivery units

Integration
requests

Integration
results

Delivery units Deliver
requests

DIS wrapper Wrapper

Mediator

Timer module

Events

Events

. . .

Figure 2: Integration System Architecture

The system employs ECA rules to specify such event-driven data integration
and delivery actions. The system architecture is shown in Figure 2. A DIS wrap-
per receives information (delivery units) sent from a dissemination-based infor-
mation source, and raises events to notify arrival of delivery units. The rule pro-
cessing moduleholds ECA rules, which specify actions to be triggered by events
raised by DIS wrappers and the timer module. When events are raised, the rule
processing module executes relevant ECA rules, which invoke data storage, in-
tegration, and delivery actions. The mediatoris responsible for data integration.
It also manages temporary relations to store delivery units. The dissemination
moduleis responsible for delivery of the integration results obtained from the
mediator. More details of the integration system architecture are given in [12].

Using the integration example in Section 2, we illustrate the function of each
module.

5

1. When the DIS wrapper receives a delivery unit from the industrial news
service, the wrapper translates it into a tuple in the relational model, and
notifies an arrival event to the rule processing system.

2. The rule processing system invokes an ECA rule corresponding to the no-
tified event, and sends a request to the mediator to store the new data in a
temporary relation.

3. When a delivery unit from the stock price information feed service has
arrived, the DIS wrapper also raises an arrival event.

4. The rule processing module invokes another ECA rule, and requests the
mediator to check whether the delivered data is related to an IT category
company. If it is, the mediator stores the new data in another temporary
relation, and sets the timer alarm for midnight of the day.

5. At midnight, the timer module raises an event. Then, the rule processing
module requests the mediator to integrate the stock price information and
the industrial news articles related with the company which were delivered
in the last two days, if the stock price exceeds the specified threshold value.

6. Finally, the rule processing system orders the dissemination module to de-
liver the integration result to the user.

4 ECA Rules

In this section, we explain ECA rules and classify them into three categories from
the viewpoint of their roles in our context. Basically, ECA rules in this paper are
same as those in active databases [15]. An ECA rule consists of three parts: the
event(on), condition(if), and action(do) clauses.

The event clause specifies an event that triggers activation of the rule. There
are two kinds of events: primitive eventand composite event. As indicated in
Section 3, the following two primitive events are raised from DIS wrappers and
the timer module:

1. arrival (R): This event is raised from a DIS wrapper and notifies arrival of
a new delivery unit from the dissemination-based information source R.

2. alarm(Alarm Name): This event is raised from the timer module when the
set time has come. Alarm Namedesignates each alarm event, and is given
when the timer module alarm is set by the setTimeroperator.

6

A composite event is constructed from primitive events and/or composite events.
Details are omitted here.

The condition clause specifies a precondition which must be met for the action
clause to be processed. In this context, we allow the condition clauses to contain
selection conditions in relational algebra expressions.

The action clause specifies data storage, integration, and delivery actions. Ba-
sically, those actions are expressed in relational algebra. As mentioned in Section
3, the mediator manages temporary relations. Update of temporary relations are
denoted as shown in Figure 3. In addition, the Deliver operator is used to send
data delivery requests to the delivery module. More details of the Delivery oper-
ator are given in [12].

(Temp):= (Expression):
Tuples (Expression)are assigned to a temporary relation (Temp).

(Temp)+= (Expression):
Tuples (Expression)are appended to a temporary relation (Temp).

(Temp)–= (Expression):
Tuples (Expression)are deleted from a temporary relation (Temp).

Figure 3: Manipulation of Temporary Relations

As explained in Section 3, various operations, such as data storage, data in-
tegration, and data delivery, are involved in the process of providing a new data
delivery service on top of dissemination-based information sources. We divide
this process into the following three phases, and each phase is implemented as a
set of ECA rules.

1. Storage of delivery units: In this phase, triggered by arrival events, the me-
diator checks whether data sent from the dissemination-based information
sources are necessary to meet the user requirements. If they are, they are
stored in temporary relations. In the example scenario in Section 3, steps
2 and 4 correspond to this phase. ECA rules employed to implement this
phase are called storage rules.

2. Generation of new delivery units: In this phase, triggered by alarm events,
the mediator extracts relevant data from temporary relations and generates
the requested delivery units, integrating them with data in other information
sources. Then, the delivery module is invoked for data delivery. In the
example in Section 3, steps 5 and 6 correspond to this phase. ECA rules
used for this phase are called generation rules.

7

3. Disposal of unnecessary delivery units: In this phase, unnecessary data
in temporary relations are thrown away. In the example in Section 3, stock
price data stored in the temporary relation becomes obsolete after midnight.
Also, industrial news articles become of no use after midnight the next day.
ECA rules used for this purpose are called garbage disposal rules, and their
activations are triggered by alarm events.

Storage rules corresponding to steps 2 and 4, respectively, in the example in
Section 3 can be written as follows.

Rule StorageINews

on: arrival(IINews)
do: TempIINews += IINews;

Rule StorageSPrice

on: arrival(ISPrice)
if : ISPrice:Category=0 IT 0

do: TempISPrice += ISPrice;
setTimer(next�:�:�:0:0:0(ISPrice:ITS), new);

Here, IINewsand ISPricedenote the most recently delivered data unit (tuple) from
the INews and SPrice information sources, respectively. The setTimeroperator in
the action clause of the second rule sets the timer alarm for the time specified by
next�:�:�:0:0:0(ISPrice:ITS). The alarm event invokes a generation rule correspond-
ing to steps 5 and 6. ISPrice:ITS denotes the arrival time of the SPrice data, and
the function next�:�:�:0:0:0(ISPrice:ITS) derives the time corresponding to midnight
of the day. Details of such functions to derive designated time are explained in
Section 5.

5 Algebraic Service Specification

As mentioned in Section 3, we use the relational model as a common model at
the mediator level. In this section, we show how to specify new information
delivery services integrating dissemination-based information sources based on
the relational algebra. In Section 7, we show how ECA rules can be derived from
the specifications.

First, we model data incoming from dissemination-based information sources
and data outgoing through new information delivery services as relations. Re-
lations modeling data from dissemination-based information sources are called
I-sequence relations. Relations modeling data outgoing through newly defined

8

information delivery services are called O-sequence relations. In both sequence
relations, tuples correspond to delivery units. I-sequence relations have the
timestamp attribute ITS, which designates the arrival time of the corresponding
delivery unit. O-sequence relations have the timestamp attribute OTS, which des-
ignates the (scheduled) delivery time of the corresponding delivery unit. In addi-
tion to ITS and OTS, they have their own attributes depending on the information
sources and the delivery requests.

Logically, an I-sequence relation represents all the data delivered from the
underlying dissemination-based information source from its service start time to
the service end time. Of course, when the information source is still in service, the
whole instance of the I-sequence relation cannot be materialized. Similarly, an O-
sequence relation represents all the data delivered through the new information
delivery service. Modeling incoming and outgoing data as sequence relations,
we can define a new information delivery service by specifying how to obtain
an O-sequence relation from I-sequence relations and, if necessary, conventional
relations representing other information sources. The basic idea here is to employ
the relational algebra for this purpose. The relational algebra provides a sound
basis.

In our scheme, a new information delivery service is defined by the following
formula:

Onew = Ω f (Ik:ITS)(E(I1; � � � ; In));

where Onew is an O-sequence relation and E is a relational algebra expression to
derive a new relation from I-sequence relations I1; � � � ; In and other conventional
relations. The operator Ω f (Ik:ITS) is introduced here. It adds the OTS attribute,
sets f (Ik:ITS) as its value, and remove all the ITS attributes included in the re-
lation obtained by E. The function f is a timestamp function, and derives a new
timestamp from the ITS attribute value in I-sequence relation Ik. (More details
of timestamp functions are explained below.) Ik is called a master I-sequence
relation (or information source), and must be referenced in E.

The new information delivery service explained in Section 2 can be specified
as follows:

Onew= Ωnext
�:�:�:0:0:0(ISPrice:ITS)(

σCategory=0IT 0(ISPrice)

1CName=Name

^previous
�:�:�:0:0:0(be f ore0:0:1:0:0:0(ISPrice:ITS))�previous

�:�:�:0:0:0(IINews:ITS)

^previous
�:�:�:0:0:0(IINews:ITS)�previous

�:�:�:0:0:0(ISPrice:ITS)

IINews

1Name=Companŷ Price�Threshold

StockholderIn f o).

9

Here, IINews and ISPrice are I-sequence relations, and IINews:ITS and ISPrice:ITS
are their ITS attributes, respectively. The functions next, previous, be f oreare
timestamp functions. The selection, projection, and join are represented by σ, π,
and 1, respectively.

Timestamp functions considered in the paper are as follows:

1. immediate(t): Returns the given timestamp t itself.

2. nextp(t): Returns the timestamp, matching the temporal pattern p, chrono-
logically next to the timestamp t.

3. previousp(t): Returns the timestamp, matching temporal pattern p,
chronologically previous to the timestamp t.

4. afterδt(t): Returns the time (timestamp) after the time interval δt from the
time t.

5. beforeδt(t): Returns the time (timestamp) before the time interval δt from
the time t.

The temporal pattern p is given in one of the following formats:

(1) year:month:day:hour:minute:second

(2) year:month:dayofweek:hour:minute:second

Non-negative integers and the wild card symbol ’*’ can be specified for fields
year, month, day, hour, minuteand second1. The field dayo f weekcan contain
one of strings fSun, Mon, Tue, Wed, Thu, Fri, Satg or ’*’. The time interval δt is
specified using the format (1), but ’*’ is not allowed.

For example,

next�:�:�:0:0:0(ISPrice:ITS)

gives the timestamp corresponding to the next midnight from the arrival time
ISPrice:ITS.

previous�:�:�:0:0:0(IINews:ITS) = previous�:�:�:0:0:0(ISPrice:ITS)

checks whether the timestamps IINews:ITSand ISPrice:ITS imply the same day.
To simplify the discussion, we make the following assumptions in the remain-

ing part of this paper.

1To simplify the discussion, we assume that ’*’ is always specified for year.

10

1. No I-sequence relation is referenced in E more than once.

2. In relations referred in E, the timestamp values appear only in ITS at-
tributes, and only timestamp functions and primitive comparison operators
(=, 6=, <, >, �, �) can be used in selection and join conditions concerning
timestamps in E.

6 Basic Properties of Service Specifications

Unfortunately, users could specify infeasible information delivery services as fol-
lows:

Onew= Ωimmediate(ISPrice:ITS)(

ISPrice

1CName=Name

^previous
�:�:�:0:0:0(a f ter0:0:1:0:0:0(ISPrice:ITS))=previous

�:�:�:0:0:0(IINews:ITS)

IINews).

The expression specifies the following requirement:

As soon as the system receives a closing stock price data of some
company, say A, from the stock price information feed source, it
should deliver it with the next day’s news articles related with A.

Obviously, it is infeasible, since the expected news articles have not yet ar-
rived when new delivery units are to be delivered. To exclude such infeasible
specifications, we define the notion of consistency.

Definition 1 The specification Onew=Ω f (Ik:ITS) (E(I1; � � � ; In)) is said to be con-
sistent, if, for all t,

σOTS=t(Ω f (Ik:ITS)(E(I1; � � � ; In)))
= σOTS=t(Ω f (Ik:ITS)(E(σITS�t(I1); � � � ;σITS�t(In)))). 2

This definition means that tuples to be delivered at time t must be generated
only from tuples obtained up to the time t.

In our scheme, we check the consistency of a given specification based on a
theorem. Before explaining the theorem, we introduce the inverse f�1

(t) for the
timestamp function f (t) as follows:

f�1
(t) = fuj f (u) = tg:

For each timestamp function introduced in Section 5, the inverse is defined as
follows.

11

1. immediate�1

immediate�1
(t) = fuju= tg

2. next�1

next�1
p (t) = fujpreviousp(t)� u< tg

3. previous�1

previous�1
p (t) = fujt < u� nextp(t)g

4. after�1

a f ter�1
δt (t) = fuju= be f oreδt(t)g

5. before�1

be f ore�1
δt (t) = fuju= a f terδt(t)g

When the expression f (t) = f1(f2(� � �(fn(t)) � � �)) is given, f�1
(t) is defined

as follows:

f�1
(t) = fuj(9un�1) � � �(9u1)

(u2 f�1
n (un�1)^�� �^u2 2 f�1

2 (u1)^u1 2 f�1
1 (t))g:

Theorem 1 If the specification Onew= Ω f (Ik:ITS)(E(I1; � � � ; In)) satisfies the fol-
lowing conditions, it is consistent:

(i) The expressionσIk:ITS2 f�1(t)(E(I1; � � � ; In)) can be rewritten into the follow-
ing form:

E0
(σI1:ITS2ψ1(t)(I1); � � � ;σIn:ITS2ψn(t)(In));

whereψ1(t); � � �;ψn(t) give selection conditions regarding the ITS values
of I1; � � � ; In, respectively.

(ii) For each i(1 � i � n), ψi(t) has the upper bound max(ψi(t)), and it is
always less than or equal to t: max(ψi(t))� t. 2

Proof In Definition 1, OTS corresponds to the formula f(Ik:ITS) in the specifi-
cation. Therefore, the lefthand side of the equation in Definition 1 can be trans-
formed as follows:

σOTS=t(Ω f (Ik:ITS)(E(I1; � � � ; In)))

= Ω f (Ik:ITS)(σ f (Ik:ITS)=t(E(I1; � � � ; In)))

= Ω f (Ik:ITS)(σIk:ITS2 f�1(t)(E(I1; � � � ; In))): (1)

By Theorem 1(i) and (ii), the expression (1) can be transformed into

Ω f (Ik:ITS)(σIk:ITS2 f�1(t)(E(σI1:ITS�t(I1); � � � ;σIn:ITS�t(In)))):

12

Replacing the selection condition Ik:ITS2 f�1
(t) with f(Ik:ITS) = t, we obtain

σOTS=t(Ω f (Ik:ITS)(E(σI1:ITS�t(I1); � � � ;σIn:ITS�t(In)))). 2

The rewriting in Theorem 1(i) is done by pushing down the selection con-
ditions on ITS values as in the conventional query optimization process [18].
Theorem 1(ii) assures that tuples to be delivered at time t can be generated only
from tuples obtained up to the time t.

As we mentioned in Section 4, we employ storage rules, generation rules, and
garbage disposal rules. However, in some cases, we do not need garbage disposal
rules. Let us consider the following requirement:

The system should deliver all the important news articles related with
company A obtained in the past on its anniversary every year.

The specification expressing this requirement is obviously consistent. If only
this delivery service is defined and important news articles on company A are
stored in a temporary relation, we cannot throw any data away. In this case, we
need no garbage disposal rule for the temporary relation. Definition 2 defines the
property related with this. In Definition 2 and the remaining part of this paper,
we use the following notations:

TSet(ψi; t) =

[

τ>0

ψi(t+ τ);

TSet+(ψi; t) =

[

τ�0

ψi(t+ τ):

Definition 2 Assume a consistent specification Onew=Ω f (Ik:ITS)(E(I1; � � � ; In)) is
given so that it can be rewritten into the form of Theorem 1(i). Then, if

ψi(t)�TSet(ψi; t) 6= φ

for some t, it is said that I-sequence relation Ii may contain disposable data under
ψi . 2

As shown in the next section, garbage disposal rules are generated only for
I-sequence relations which may contain disposable data.

7 Derivation of ECA Rules

In this section, we discuss derivation of ECA rules from the relational algebra-
based specifications explained in Section 5. First, we show how to derive storage
rules, generation rules, and garbage disposal rules from the specification of a new
information delivery service in Subsection 7.1. Subsection 7.2 discusses cases
where multiple information delivery services are specified.

13

7.1 Basic Derivation Scheme

7.1.1 Overview

For a specification Onew= Ω f (Ik:ITS)(E(I1; � � � ; In)), derivation of ECA rules is
outlined as follows:

1. Transform the given specification into σIk:ITS2 f�1(t)(E(I1; � � � ; In)).

2. Push down selection conditions as much as possible as in the conventional
query optimization scheme, and rewrite the above expression into the fol-
lowing form:

E0
(σC1(σI1:ITS2ψ1(t)(I1)); � � �;σCn(σIn:ITS2ψn(t)(In)));

where Ci (1 � i � n) is the selection condition on I i’s attributes except ITS.

3. Check whether the specification is consistent. If it is not, exit from the
procedure.

4. Derive a storage rule for each I-sequence relation Ii (1 � i � n).

5. Derive a generation rule.

6. For each I-sequence relation Ii , check whether it may contain disposable
data under ψi . If it is, derive a garbage disposal rule for Ii .

When we apply the steps 1 and 2 to the example specification given in Section
5, we get the following expression.

σCategory=0IT 0(

σISPrice:ITS2fujprevious
�:�:�:0:0:0(t)�u^u<tg(ISPrice))

1CName=Name

^previous
�:�:�:0:0:0(be f ore0:0:1:0:0:0(ISPrice:ITS))�previous

�:�:�:0:0:0(IINews:ITS)

^previous
�:�:�:0:0:0(IINews:ITS)�previous

�:�:�:0:0:0(ISPrice:ITS)

σIINews:ITS2fujprevious
�:�:�:0:0:0(be f ore0:0:1:0:0:0(previous

�:�:�:0:0:0(t)))�u

^u<previous
�:�:�:0:0:0(t)g(IINews)

1Name=Companŷ Price�T hreshold

StockholderIn f o

In the above expression, ψSPrice(t), ψINews(t) are identified as follows:

ψSPrice(t) = fujprevious�:�:�:0:0:0(t)� u^u< tg;

ψINews(t) = fujprevious�:�:�:0:0:0(be f ore0:0:1:0:0:0(

previous�:�:�:0:0:0(t)))< u^u� next�:�:�:0:0:0(previous�:�:�:0:0:0(t))g:

14

They satisfies the condition of Theorem 1(ii) as follows:

max(ψSPrice(t)) = t � t;

max(ψINews(t)) = next�:�:�:0:0:0(previous�:�:�:0:0:0(t)) � t:

Therefore, the specification is consistent.
In the following, we present more details of the steps 4 through 6.

7.1.2 Storage Rules

A storage rule is derived for each I-sequence relation Ii (1 � i � n) referenced in
the service specification. The storage rule for I-sequence relation Ii is invoked
when a delivery unit has arrived from the underlying dissemination-based infor-
mation source. Then, in the condition clause, it checks whether the new data
(tuple) satisfies the filtering condition shown below. If it does, it requests the
mediator to store it into a temporary relation in the action clause. If I-sequence
relation Ii is the master in the specification, it sets the timer alarm to raise an
alarm event which invokes the relevant generation rule.

The filtering condition in the condition clause should check whether the new
tuple will be used in the future. When we get the expression

E0
(σC1(σI1:ITS2ψ1(t)(I1)); � � � ;σCn(σIn:ITS2ψn(t)(In)))

in the above step 2,
σCi (σIi :ITS2ψi(t)(Ii))

can be used to derive the filtering condition. For a tuple to be used in the future,
it must satisfy the condition Ci. Also, it must meet the temporal condition

Ii:ITS2 TSet+(ψi;now);

where “now” stands for the current time.
To summarize, the storage rule for I-sequence relation Ii can be derived as

follows.

(i) Case 1: Ii is a master I-sequence relation.

Rule Storagei

on: arrival(Ii)
if : Ii:ITS2 TSet+(ψi;now)^Ci

do: TempIi += Ii;
setTimer(f (Ii:ITS);new);

15

The setTimer(Time;Name) operator sets the timer alarm for the time Time
to raise an alarm event named Name2. In the context of storage rules, Ii
stands for the new tuple provided by the DIS wrapper rather than the I-
sequence relation itself. However, we abuse this notation for simplicity.

(ii) Case 2: Otherwise.

Rule Storagei

on: arrival(Ii)
if : Ii:ITS2 TSet+(ψi;now)^Ci

do: TempIi += Ii;

Storage rules derived for the service specification given in Section 5 are as
follows. They can be reduced to those shown in Section 4.

Rule StorageSPrice

on: arrival(ISPrice)
if : ISPrice:ITS2 TSet+(ψSPrice;now)^ ISPrice:Category=0 IT 0

do: TempISPrice += ISPrice;
setTimer(next�:�:�:0:0:0(ISPrice:ITS);new);

Rule StorageINews

on: arrival(IINews)
if : IINews:ITS2 TSet+(ψINews;now)
do: TempIINews += IINews;

7.1.3 Generation Rules

A generation rule is derived from the specification. Its invocation is triggered by
the alarm from the timer module set in the storage rule for the master I-sequence
relation. For the expression

E0
(σC1(σI1:ITS2ψ1(t)(I1)); � � � ;σCn(σIn:ITS2ψn(t)(In)))

obtained in the step 2, it requests the mediator to execute the expression

Ω f (Ik:ITS)(E
0
(σTempI1 :ITS2ψ1(now)(TempI1); � � � ;σTempIn:ITS2ψn(now)(TempIn))):

Thus, the generation rule can be specified as follows.

2If the function f is immediate, the alarm event should be raised immediately. In such a case,
setTimer(Immediate, Name)is used, but more details are omitted.

16

Rule Generationnew

on: alarm(new)
if : true
do: Onew= Ω f (Ik:ITS)(

E0
(σTempI1 :ITS2ψ1(now)(TempI1); � � � ;σTempIn:ITS2ψn(now)(TempIn)));

Deliver(Onew);

The generation rule derived for the service specification given in Section 5 is
as follows.

Rule Generationnew

on: alarm(new)
if : true
do: Onew= TempSPrice

1CName=Name

^previous
�:�:�:0:0:0(be f ore0:0:1:0:0:0(ISPrice:ITS))�previous

�:�:�:0:0:0(IINews:ITS)

^previous
�:�:�:0:0:0(IINews:ITS)�previous

�:�:�:0:0:0(ISPrice:ITS)

TempINews

1Name=Companŷ Price�Threshold

StockholderIn f o;
Deliver(Onew);

7.1.4 Garbage Disposal Rules

In the expression

E0
(σC1(σI1:ITS2ψ1(t)(I1)); � � � ;σCn(σIn:ITS2ψn(t)(In)))

obtained in the step 2, if Ii may contain disposable data under ψi , then a garbage
disposal rule for Ii is derived.

The garbage disposal rule is invoked by alarm events periodically raised from
the timer module every time interval INT. We assume that the system admin-
istrator determines the time interval INT. In the condition clause, it checks the
following condition

TSet+(ψi;now� INT)�TSet+(ψi;now) 6= φ:

If it holds, it executes the action clause. In the action clause, it throws away tuples
which will be never used in the future as follows:

TempIi –=σTempIi :ITS2TSet+(ψi ; now�INT)�TSet+(ψi ; now)(TempIi):

Thus, if Ii may contain disposable data, a garbage disposal rule is derived as
follows.

17

Rule GarbageDisposali
on: alarm(GarbageDisposali)
if : TSet+(ψi;now� INT)�TSet+(ψi;now) 6= φ
do: TempIi –= σTempIi :ITS2TSet+(ψi ; now�INT)�TSet+(ψi ; now)(TempIi);

setTimer(now+ INT;GarbageDisposali);

In the example scenario, we get ψSPrice(t) and ψINews(t) for I-sequence rela-
tions ISPriceand IINewsas shown in Subsection 7.1.1. Since both

TSet+(ψSPrice; t� INT)�TSet+(ψSPrice; t)

= fujprevious�:�:�:0:0:0(t� INT)� u^u< previous�:�:�:0:0:0(t)g;

TSet+(ψINews; t� INT)�TSet+(ψINews; t)

= fujprevious�:�:�:0:0:0(be f ore0:0:1:0:0:0(previous�:�:�:0:0:0(t� INT)))� u

^u< previous�:�:�:0:0:0(be f ore0:0:1:0:0:0(previous�:�:�:0:0:0(t)))g

are not always empty, they may contain disposable data. Therefore, garbage dis-
posal rules for ISPriceand IINewsare derived as follows.

Rule GarbageDisposalSPrice

on: alarm(GarbageDisposalSPrice)
if : TSet+(ψSPrice;now� INT)�TSet+(ψSPrice;now) 6= φ
do: TempISPrice –=

σTempISPrice:ITS2TSet+(ψSPrice; now�INT)�TSet+(ψSPrice; now)(TempISPrice);
setTimer(now+ INT;GarbageDisposalSPrice);

Rule GarbageDisposalINews

on: alarm(GarbageDisposalINews)
if : TSet+(ψINews;now� INT)�TSet+(ψINews;now) 6= φ
do: TempIINews –=

σTempIINews:ITS2TSet+(ψINews; now�INT)�TSet+(ψINews; now)(TempIINews);
setTimer(now+ INT;GarbageDisposalINews);

7.2 Rule Generation for Multiple Service Specifications

In the previous subsection, we assumed that we have only one service specifi-
cation. In this section, we discuss the case we have multiple consistent service
specifications S1; � � � ;Sm defining O-sequence relations O1; � � � ;Om, respectively,
on top of I-sequence relations I1; � � � ; In. An I-sequence relation Ii may be ref-
erenced in more than one specifications. In the following, we assume that the
expression

E0 j
(σCj

1
(σI1:ITS2ψ j

1(t)
(I1)); � � � ;σCj

n
(σIn:ITS2ψ j

n(t)
(In)))

18

is obtained by the step 2 in Subsection 7.1.1 from the service specification Sj .

7.2.1 Storage Rules

A storage rule is derived for each I-sequence relation Ii that is referenced in at
least one specification. The derivation is similar to that explained in Subsection
7.1.2. A difference is that the filtering condition should take care of all selection
conditions

σCj
i
(σIi :ITS2ψ j

i (t)
(Ii))

for Ii . Another difference is that the timer alarm should be set to trigger invoca-
tion of the generation rule for each Sj that references Ii as the master I-sequence
relation.

The storage rule for Ii is given as follows.

Rule Storagei

on: arrival(Ii)
if : tag(Ii;

W
j(Ii:ITS2 T Set+(ψ j

i ;now)^Cj
i))

do: TempIi += Ii ;
For each Sj that references Ii as the master,
if j is included in Ii:Tag

setTimer(f j(Ii:ITS); j);

The range of the index j in the disjunction
W

j(:::) is the set of indexes of Sj ’s
which reference Ii . The operator tag(Ii;

W
j(:::)) adds the Tag attribute to the tuple

in Ii . The assigned attribute value is the set of index value j such that the tuple
satisfies the condition

Ii:ITS2 TSet+(ψ j
i ;now)^Cj

i :

It returns the truth value of
W

j(:::).

7.2.2 Generation Rules

A generation rule is derived for each service specification Sj . In this context, each
temporary relation may include tuples which are used to derive data for different
services. Therefore, in the generation rule for specification Sj , we have to extract
data for Sj . This can be done by checking the Tag attribute values.

Rule Generation j

on: alarm(j)
if : true
do: Oj = E0 j

(π�(σ j2Tag(TempI1)); � � � ;π�(σ j2Tag(TempIn)));
Deliver(Oj);

Here, π� stands for the projection operation to eliminate the Tag attribute.

19

7.2.3 Garbage Disposal Rules

A garbage disposal rule is derived for Ii, if it may contain disposable data in the
context of at least one service specification. Data becomes garbage when nobody
is going to use it. The garbage disposal rule for I-sequence relation I i is derived
as follows.

Rule GarbageDisposali
on: alarm(GarbageDisposali)
if : (
T

j(TSet+(ψ j
i ;now� INT)�TSet+(ψ j

i ;now))) 6= φ
do: TempIi –= σTempIi :ITS2

T
j(TSet+(ψ j

i ;now�INT)�TSet+(ψ j
i ;now))(TempIi);

setTimer(now+ INT;GarbageDisposali);

8 Related Works

In this paper, we have proposed a framework for specifying new information de-
livery services integrating existing dissemination-based information sources and
automatically deriving ECA rules from the specification.

Infogate/EntryPoint/PointCast[8, 17] and Castanet[11] are examples of
commercial dissemination-based information sources. Although some of those
sources provide the information filtering service, they do not have facility for
information integration.

DBIS [1, 2] and Muffin [16] aim to extract information from multiple
dissemination-based information sources. DBIS uses Information Brokerto ac-
cess multiple dissemination-based sources transparently and to select information
based on user profiles. Muffin can create a new virtual channelbased on the user
profile. To select information from multiple information services, it uses fre-
quency of delivery, freshness, and popularity as well as similarity. These two re-
searches only consider information selection from multiple dissemination-based
information sources, and do not consider more sophisticated integration involving
dissemination-based sources or other traditional information sources.

In SADB [20], ECA rules are used to manipulate data coming from
dissemination-based information sources. However, they do not show declara-
tive requirement specification or rule generation schemes.

OpenCQ[10] is an information integration system for distributed heteroge-
neous information sources. This system is based on the event-driven approach
and supports continual queries. A continual queryconsists of three components,
a query, a trigger condition, and a termination condition. When a trigger condi-
tion becomes true, this system repeatedly executes the query until the stop con-
dition holds. Every time, the difference between the current query execution and

20

the previous one is reported as a result. Their work is related to our approach,
since it follows an event-based approach in the context of information integration.
However, OpenCQ considers only a particular case of the dissemination-based
delivery of the integration results. Moreover, its mediator cannot store integra-
tion results. Therefore, OpenCQ cannot support integration of dissemination-
based information sources or complex delivery requirements shown in this paper.
Moreover, the users have to write continual queries directly.

Tapestry[21] also supports continual execution of queries for append-only
relational databases. A continual query in Tapestry is an SQL query including
time conditions in the WHERE clause. Like OpenCQ, this system reports the
difference from the previous result to the user. Although an append-only database
can be seen as a dissemination-based information sources, the queries allowed in
Tapestry are limited to special cases. Moreover, Tapestry does not provide event-
driven data processing or information integration facilities.

Production rulesand incremental algorithmsare proposed to be used for
maintenance of materialized views [3, 4, 7, 13]. Those works are related with
ours, since O-sequence relations introduced in this paper could be regarded as
views on top of I-sequence relations. Automatic rule derivation from view defi-
nitions is discussed in [4]. However, in the context of materialized view mainte-
nance, they do not consider temporal properties such as arrival and delivery times,
temporal dependencies, or timestamp functions. Processes such as garbage dis-
posal are not considered, either. In addition, in [4], tuples for view relations are
generated as soon as base relations are updated. In contrast to this, tuples for
O-sequence relations are generated at the scheduled delivery time. [13] proposes
a scheme to delete tuples in base relations which do not contribute to materializa-
tion of view relations. The work is related with the derivation of garbage disposal
rules in our scheme. However, they do not consider temporal properties, either.

SEQ[19] is a data model for sequence data. Sequence relations in this paper
also model sequences of delivery units. SEQ is based on the relational model,
but a number of new operators are introduced. In this paper, we have slightly
extended the original relational algebra with operators to cope with timestamps.

9 Conclusion

In this paper, we have discussed a scheme to specify new information delivery ser-
vices integrating multiple dissemination-based information sources. We have as-
sumed the mediator/wrapper-based information integration system architecture,
in which ECA rules are employed to implement event-driven data storage, inte-
gration, and delivery operations. In the proposed approach, the relational model is
used as a common data model. Existing dissemination-based information sources

21

are modeled as I-sequence relations, and data to be delivered through new infor-
mation delivery services are modeled as O-sequence relations. Then, relational
algebra-based specifications are used to define O-sequence relations on top of I-
sequence relations. In addition, we have discussed some important properties of
the specification, and shown how to derive ECA rules from the algebraic service
specifications.

The proposed scheme is being implemented on the prototype InfoWeaver sys-
tem. The algebraic specification provides a sound basis for more declarative and
user-friendly specification schemes. They include schemes based on SQL and
GUI. Development of such facilities is one of the future research issues. They
also include derivation of rules for more sophisticated data management. In this
paper, we have employed storage rules, generation rules, and garbage disposal
rules. Rules may be used for deriving intermediate data. We also have to cope
with cases where the scheduled delivery time is determined in a more complicated
manner.

Acknowledgments

This research is supported in part by the Grant-in-Aid for Scientific Research
from the Ministry of Education, Science, Sports and Culture, Japan.

References

[1] D. Aksoy, M. Altinel, R. Bose, U. Cetintemel, M. Franklin, J. Wang, and S. Zdonik.
Research in Data Broadcast and Dissemination. Proc. AMCP ’98, pp. 194–207,
1998.

[2] M. Altinel, D. Aksoy, T. Baby, M. Franklin, W. Shapiro, and S. Zdonik. DBIS
Toolkit – Adaptable Middleware for Large-Scale Data Delivery. Proc. ACM SIG-
MOD ’99, 1999.

[3] J. A. Blakeley, P. A. Larson, and F. W. Tompa. Efficiently Updating Materialized
Views. Proc. ACM SIGMOD ’86, pp. 61–71, May 1986.

[4] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance.
Proc. 17th VLDB, 1991.

[5] R. Domenig and K. R. Dittrich. An Overview and Classification of Mediated Query
Systems. ACM SIGMOD Record, 28(3), pp. 63–72, 1999.

[6] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth (Eds.). Management of Heteroge-
neous and Autonomous Database Systems. Morgan Kaufmann, 1999.

[7] E. N. Hanson. A performance analysis of view materialization strategies. Proc.
ACM SIGMOD ’87, pp. 440–453, 1987.

22

[8] Infogate Inc.. Infogate. http://www.infogate.com/.

[9] H. Kitagawa, A. Morishima, and H. Mizuguchi. Integration of Heterogeneous Infor-
mation Sources in InfoWeaver. Advances in Database and Multimedia for the New
Century – A Swiss/Japanese Perspective, World Scientific Publishing, pp. 124–137,
2000.

[10] L. Liu, C. Pu, and W. Tang. Continual Queries for Internet Scale Event-Driven
Information Delivery. IEEE TKDE, 11(4), pp. 610–628, 1999.

[11] Marimba Inc.. Castanet. http://www.marimba.com/products/
castanet-intro.htm.

[12] H. Mizuguchi, H. Kitagawa, Y. Ishikawa, and A. Morishima. A Rule-oriented Ar-
chitecture to Incorporate Dissemination-based Information Delivery into Informa-
tion Integration Environments. Proc. 2000 ADBIS-DASFAA, pp. 185–199, 2000.

[13] H. G. Molina, W. J. Labio, and J. Yang. Expiring Data in a Warehouse. Proc. 24th
VLDB, 1998.

[14] A. Morishima and H. Kitagawa. InfoWeaver: Dynamic and Tailor-Made Integration
of Structured Documents, Web, and Databases. Proc. ACM DL ’99, pp. 235–236,
1999.

[15] N. W. Paton and O. Diaz. Active Database Systems. ACM Comp. Serv., 31(1), 1999.

[16] M. Qiang, H. Kondo, K. Sumiya, and K. Tanaka. Virtual TV Channel: Filtering
Merging and Presenting Internet Broadcasting Channels. ACM DL Workshop on
WOWS, 1999.

[17] S. Ramakrishnan and V. Dayal. The PointCast Network. ACM SIGMOD Record,
27(2), p. 520, 1998.

[18] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.
Access Path Selection in a Relational Database Management System. Proc. ACM
SIGMOD ’79, pp. 23–34, 1979.

[19] P. Seshadri, M. Livny, and R. Ramakrishnan. SEQ: A Model for Sequence
Databases. Proc. ICDE, pp. 232–239, 1995.

[20] T. Terada, M. Tsukamoto, and S. Nishio. Design and Implementation of an Active
Database System for Receiving Broadcast Data. Journal of IEICE, J83-D-I(12), pp.
1272–1283, 2000.

[21] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous Queries over
Append-Only Databases. Proc. SIGMOD ’92, pp. 321–330, 1992.

23

