Navigator-based Query Processing in the World Wide Web Wrapper

Kazunori Katohf

Atsuyuki Morishimafy

Hiroyuki Kitagawaf

TDoctoral Program in Engineering, University of Tsukuba
TInstitute of Information Sciences and Electronics, University of Tsukuba

Abstract

Integration of heterogeneous information sources has been one of the most important
issues in recent advanced application environments. We are developing an information
integration environment for the World Wide Web (or shortly, Web), relational
databases, and structured document repositories. In this environment, manipulation
of the information sources is performed through software modules called wrappers.
In this paper, we present design and implementation of the Web wrapper. In general,
Web page manipulation may cause very large data transfer cost if all the necessary
pages are transferred to the Web wrapper. To alleviate this problem, we propose
a query processing scheme which uses distributed agents, named navigators. The
navigators cooperatively take part of the wrapper’s functions at Web server sites, to
reduce the cost of Web page transfer. This paper includes experimental results on

data transfer costs in this scheme.

1 Introduction

Today, a huge number of information sources are
available via computer networks. Thus, integration
of heterogeneous information sources has been one
of the most important issues in recent advanced
application environments [2][3][7]. In particular,
with the broad acceptance of the World Wide
Web (or Web), there is a great deal of demand
for integration of the Web and other information
sources.

We are developing an information integration
environment for the Web, relational databases, and
structured document repositories [8][11][12][13].
Web pages are usually written in XML or HTML.
Structured document repositories are assumed to
contain documents written in SGML, XML, or
HTML.

This environment uses software modules called
mediators and wrappers [17][19] to attain integra-
tion (Figure 1). This is one of the promising
approaches to integrate heterogeneous information
sources. Many integration systems follow this
approach [4][16].

In this approach, wrappers are associated with
information sources, and the mediator acts as a
coordinator. Integration of information sources
is attained as follows. First, wrappers translate
information sources into a common data model (in
our environment, WebNR/SD data model), so that
users can query and browse data uniformly through
the mediator. If users submit a data manipulation
request to the mediator, the mediator analyzes
the request, decomposes it into local processing
requests, and sends them to wrappers. Each
wrapper translates requests into local commands,
and issues them to the local information source.

Local commands may be simple requests to get
particular data items such as Web page fetches,
or complicated queries which utilize querying ca-
pability of local information sources, such as SQL
queries. The wrapper receives the intermediate
result, translates it into the common data model,
and sends it back to the mediator. Finally, the
mediator collects data from the wrappers and
produces the final result, which is returned to the

client.

(3)Request based on
TInteg rated Schema

Client

WebNR/SD

(2)Integrated
Schema X
(6)Final Result

(4) Local Requests
to Info. Sources

\\(S)Partial

(1) WebNR/SD

Representation
of Schema Info.
on Sources

Results

Document
Repository

Figure 1. Integration environment

In this paper, we describe an architecture of
the Web wrapper. As mentioned in [1] and [14],
navigation is one of the essential operations for
the Web. Navigation is to find particular paths
(or pages) by traversing hyper-text links from a
given starting point. Many Web query languages
[9][10][15] support navigational queries, which find
particular paths (or pages) based on a given linking

pattern (such as a regular expression and logical
constraints).

In our environment, the Web wrapper is re-
sponsible for Web operations including navigation
(and navigational queries). To implement the
operations, the Web wrapper sometimes has to do
a lot of work, since the Web itself only provides the
very basic page fetch mechanism and has no query
processing capability. For example, navigational
queries need to successively follow hyper-text links
occurring in Web pages. Therefore, all the Web
pages traversed in the navigational queries need to
be transferred to the wrapper from distant Web
server sites. In general, this causes very large data
transfer cost.

To alleviate this problem, we propose a
query processing scheme which employs distributed
agents named navigators. A navigator is dis-
patched to a Web server site and is responsible for
obtaining qualified (partial) paths in the scope of
the server. It is only qualified path information
that navigators transfer to the Web wrapper rather
than the whole contents of accessed pages. Thus,
navigators can bring about reduction of the data
transfer cost.

To the best of our knowledge, no efficient im-
plementation scheme for Web navigational queries
has been proposed, and no experimental result has
been reported.

The remainder of this paper is organized as
follows. In Section 2, we explain WebNR/SD,
the common data model in our integration en-
vironment. This section also gives description
of how navigational queries can be specified in
WebNR/SD. In Section 3, first, we describe func-
tions of the Web wrapper, and then, we propose
a query processing scheme which uses navigators
to implement navigational queries. In Section 4,
we report and discuss experimental results. The
experiments shows that the proposed scheme can
considerably reduce the amount of data transfer,
and that, in many cases, it can reduce the execution
time of navigational queries. Section 5 is the
conclusion.

2 WebNR/SD

In this section, we overview WebNR/SD focusing
on Web-related issues. More detailed description of
WebNR/SD is given in [12]. WebNR/SD is a data
model which introduces abstract data type concept
into nested relations. It has an abstract data
type named SD type (structured document type) to
deal with raw structured documents (SGML, XML,
and HTML documents). Also, it has an abstract
data type named Hlink type to represent hyper-text
links which appear in XML and HTML documents.
Figure 2 shows a sample relation in WebNR/SD.
The domains of attributes A and D are String and

Integer, respectively. The domain of B is SD type,
and that of E is Hlink type.

C
A B
D E
<table><dep> 1 | ...
abc
Department. .. 2
3
def)

Figure 2. Sample relation in WebNR/SD

WebNR/SD provides the nested relational alge-
bra operators, and a number of functions associated
with SD type to retrieve text elements contained
in documents. Also, WebNR/SD has operators,
called converters, to dynamically convert struc-
tured documents into nested relational structures
and vice versa.

Moreover, WebNR/SD has a number of opera-
tors for Web integration. Navigate operator is used
to realize navigational queries in the Web. Import
operator is used to fetch the contents of Web pages
as SD type values from the outside Web world on
demand. In contrast, Ezport operator exports SD
type values stored in relations as Web pages to the
outside Web world.

Integration of Web, structured documents and
relational databases is achieved by combining the
above operators.

2.1 SD type and Hlink type

A value of SD type is a pair of a DTD (Document
Type Definition) and text in which tags are embed-
ded according to the DTD. We call a value of SD
type an SD value'.

Figure 3 shows an example SD value. The
DTD in the upper box represents the document
structure. Inside the lower box is the tagged text.
A tagged text is divided into elements surrounded
by a start tag <¢> and an end tag </ ¢>.

report = seq(title, authors, body, ref)
authors = rep(author)

author = seq(name, homepage)

homepage = hlink

body = rep(section)

section = seq(sectitle, rep(para))

<report><title>On Web Integration</title>
<authors><author><name>Thomas</name>

<homepage href="http://T.ac.jp/pl.xml">His home
page</homepage></author> ... </authors>
<body><section><sectitle>Introduction</sectitle>
<para> ...

Figure 3. Sample SD value

Elements with hlink structure are called link-
ing elements and represent hyper-text links to
Web pages just as anchor elements in HTML

documents. The hlink structure is associ-
ated with the attribute “href,” whose value
designates a URL. For example, “<homepage

IThe DTD part can be NULL when the SD value
corresponds to an HTML or XML document without DTD.

href="http://T.ac.jp/pl.xml">His home page
</homepage>” in Figure 3 is a linking element.

A value of Hlink type (an Hlink value) is defined
as an SD value which consists of only one linking
element.

2.2 Web-Related Operators

Export and Import Operators

Export (E) exports SD values stored in a relation
to the Web world as Web pages. Import (I) imports
Web pages residing in the Web world into a relation
as SD values. Figure 4 gives an example of Export
and Import, where

ro:=E4 v 1,6(r),

and
r1:=T401,6(r2).

E v .c(r1) creates Web pages whose URLs
are given in attribute U. The Web pages’ contents
correspond to SD values stored in attribute A
of r;. Attribute A in the result relation ro has
Hlink values referring to those pages and containing
character strings originally stored in attribute L.
I4,u,1,6(r2) works in the opposite direction. At-
tribute A in the result relation ry obtains SD values
corresponding to Web pages which are referred to
by Hlink values stored in attribute A of r,.

T

ID A U L G

(‘e:seq(firep(g),h),
1 | “<e><f><g>T4</g>
</£><h>TEL/h></e>”)

http://T.ac.jp/p.xml | T Univ | a

Tl

D A

1 (‘a:hlink, “
T Univ ”)

Figure 4. Example of Export and Import

Navigate Operator

Navigate (N) realizes navigational queries. That is,
this operator navigates through the Web according
to a path regular expression specified as a param-
eter. In path regular expressions, hyper-text links
are represented by — (a local link whose destina-
tion and source pages reside in the same Web server
) and = (a global link whose destination and source
pages reside in different Web servers), while Web
pages are represented by character strings (labels)
and a period. For example, B — .= (C — D is a
path regular expression that represents the set of
paths that start with a Web page B in a Web server
X, followed by a page in the same server X and a
page C' in a different server Y (# X), and end with
a page D in the server Y.

Path regular expressions can contain alternation
and repetition structures. For example, A(— .)x —
B | A = B represents the set of paths which

start with a page A, followed by one or more local
links leading to B, or from a page A to B via a
global link. ’x/n;..ny/’ can be used as syntactic
sugar. For example, A(— .) % /2.3/ — B is
equivalent to 4 - . - . 5> B| A > . o5 . >
. = B. Path regular expressions can also specify
word containment conditions on Web pages?. The
condition is placed just after a label or a period.
Figure 5 shows the BNF specification of path

regular expressions?.
path_reg_expr ::= label p_expr {’|’ label p_expr}
p-_expr == link page [’[’ condition "]’]
| pexpr { p-expr }
| pexpr { °|” p-expr }
| p-expr "’ ’/'num’..’'num’/’]
| '(C pexpr’)’
link n== >0 =>
page == label | 7

Figure 5. Path regular expression syntax

Suppose that there is a hyper-text link structure
shown in Figure 6 in the Web. In this figure,
each Uiz stands for a URL, a, 3, 7 are Web
server names, and lower-case letters show linking
elements. Figure 7 gives the result of the following
expression:

74 1= N (5)um.= B(—) x> C["paper],D(T3)-

Labels in path regular expressions are used
to associate Web pages with relational attributes.
The second parameter of Navigator operator (in
this case, D) specifies that attribute D of the
result relation contains the set of paths specified by
the path regular expressions. Figure 7 shows two
important points: (1) Each page on the paths is
represented by an Hlink value referring to the Web
page instead of the contents of the page itself. (2)
Links to those pages corresponding to the period
do not appear in sub-relations of attribute D.

e N U6 N\
U2 U4 / paper
d g
e
U1 / A h U7
07
a—p
o\ L)
{ ™\
\U3 us us
f i »| | paper
. J J

Figure 6. Example hyper-text link structure

2Actually, the conditions can be more complex ones
based on region algebra. Details are omitted here.

3We assume that every path specified by a path regular
expression gives non-empty binding to all the labels. A —
B | A— C is an example which violates the restriction.

T3:
D A
1 ("a:hlink,
“a”)
T4
D
ID A B C
("a:hlink, ("a:hlink,
“ |“
d") g”)
. ("a:hlink, (‘a:hlink,
“< a:hlmk, “ |“
1 e” > i” >
a”) (ashlink, {a:hIink,
“ (“
£”) i”)

Figure 7. Example of Navigate operator

The path regular expressions are essentially the
same as those of WebSQL queries?.

3 Web Wrapper

In the integration environment, the Web wrapper
is placed on the site where the mediator works.
The Web wrapper provides the mediator with the
following functions.

1. It creates relational views on top of the Web:
In WebNR/SD, the Web is modeled as a set of
collections of Hlink values (i.e. unary relations
with an Hlink type attribute). For example,
bookmarks in Web browsers can be used to
construct such unary relations. The Hlink
values work as anchor points to fetch necessary
Web pages with Navigate and Import opera-
tors.

2. Tt executes Export, Import, Navigate opera-
tors: When the mediator applies these opera-
tors to relational views provided by the Web
wrapper, the Wrapper is responsible for their
execution®.

We focus on execution of the Navigate operator
here. The most basic scheme that executes the
Navigate operator would be that the Web wrapper
performs everything. In the following discussion,
first, we show the basic scheme and its problem.
Then, we propose a more sophisticated scheme
which utilizes distributed agents.

3.1 Basic Scheme for the Navigate Opera-
tor

According to the path regular expression specified
as a parameter of Navigate operator, the wrapper

4WebSQL permits other link types such as an interior
link. And it permits no word containment condition in path
regular expressions. However, such differences have no effect
on our discussion.

5In case the mediator applies these operators to relations
materialized in the mediator, it calls the Web wrapper
functions to perform required data transformation tuple-at-
a-time.

can construct a finite state automaton. The wrap-
per fetches Web pages and uses the automaton to
determine if each path is qualified for the specified
path regular expression.

Figure 8 shows the finite automaton for path
regular expression A(— .)x = . = B(— .)x —
C["paper”]. In this figure, states are annotated
with character strings or numbers. The character
strings correspond to the labels in the path regular
expression. State transition can have three types
of conditions. They are local links, global links,
and word containments, represented by — , =, and

d . . .
YA respectively. Their meanings are the same as
the counterparts in path regular expressions.

In the basic scheme, the Web wrapper can
obtain the set of qualified paths by fetching all
the Web pages along the candidate paths and
examining whether each path is accepted by this
automaton. However, this scheme causes very large
data transfer costs since all the Web page contents
are transferred from distant Web servers to the
Web wrapper.

paper
e o 25

Figure 8. Automaton corresponding to
A(=)x = .= B(—)x = C["paper”]

3.2 Utilization of Distributed Agents

To alleviate this problem, we propose a more
sophisticated scheme which employs distributed
agents.

The scheme uses agents named navigators. A
navigator is dispatched to a Web server site and is
responsible for obtaining qualified (partial) paths
in the scope of the server (Figure 9). In contrast
to the basic scheme, it is only qualified path
information that navigators transfer to the Web
wrapper. Therefore, this can reduce the data
transfer cost.

In order to realize this scheme, the wrapper
decomposes the finite state automaton for the
whole path regular expression into a number of
sub-automatons. The decomposed automatons are
incorporated into different navigators, so that each
navigator can determine if paths are qualified for
the partial path regular expression in the scope of
a single Web server.

- Final result
join

[Web Wrapper :
/ S \ Q;Jalified paths

navigator navigator

navigator

sub-automaton

Figure 9. Utilization of navigators

Decomposition of an Automaton

We represent the automaton as X and a sub-
automaton as X;. Let I = {IS(X)} UGS(X),
where (1) IS(X) is the initial state in X, and
(2) GS(X) is the set of states gs in X such that
gs is the destination of some global link in X.
The states in I are used as initial states in sub-
automatons. Also, let F = GS(X)UAS(X), where
AS(X) is the set of accepting states in X. The
states in F' are used as accepting states in sub-
automatons. Then, X; is defined as an automaton
such that (1) its initial state is some state in I,
and (2) it has states in X reachable from its initial
state through state transitions which do not go over
any states in F (as mentioned above, states in F
become accepting states in X;). If an accepting
state in X; does not belong to AS(X), we call it
an intermediate accepting state. Also, we refer to
the sub-automaton which has IS(X) as the root
automaton.

Figure 10 shows the result of decomposition of
the automaton in Figure 8. In this case, IS(X) =
A, GS(X) = {B}, AS(X) = {C}, I = {4, B}, and
F = {B,C}. As a result, two automatons X; and
X, are obtained by the decomposition. X; is the
root automaton, and B is an intermediate accepting
state.

X2

G50

: an intermediate accepting state@ an accepting state

Figure 10. Sub-automatons

Navigation Algorithm

Now, we show how to create and dispatch naviga-
tors. First, when a Navigate operator is executed,
sub-automatons are constructed by decomposing
the automaton for the path regular expression.
Then, the Web wrapper creates a navigator which
has the root automaton. The Web wrapper dis-
patches it to Web server a which manages the
starting Web page (i.e. the page referred to by a

starting Hlink value). The navigator obtains the
set of qualified paths originated by the starting
Hlink value in the scope of «, and it records the
result paths in relations (tables). If the result
paths contain a path which reaches an intermediate
accepting state s in the root automaton, it indicates
that the next Web page is managed by a different
Web server 3(# a) (note that the final transition is
always caused by a global link if the accepting state
is intermediate one). The navigator sends this in-
formation to the Web wrapper. Then, the wrapper
creates another navigator whose automaton has s
as its initial state, and dispatches it to the site of
Web server 3. In case that the site already has a
navigator associated with the same automaton, the
navigator is reused and no new navigator is created.
Then, the new (or reused) navigator receives an
Hlink value as a starting point, and works in the
same way. When a path reaches some accepting
(not intermediate) state, it is considered to be
qualified for the whole path regular expression.
This process terminates when there is no further
hyper-text link to follow".

Note that before a navigator records some
partial path into a relation, it checks whether there
already exists the same partial path in the relation.
If duplicates exist, no redundant traversal of the
path is launched. Similarly, infinite iteration is
avoided when a navigator works on a Web server.
Therefore, the algorithm terminates even if cyclic
structures appear in the Web.

Example

We illustrate the above algorithm by an example.
Consider NA(—)_)*—).:>B(—>.)*—>C[”paper”],D(r3) (1”3
is given in Figure 7). Then, sub-automatons are
X, and X, in Figure 10. The starting Hlink value
in rg refers to a Web page at URL Ul. Assume
that relevant Web pages are linked and managed
as shown in Figure 6.

Figure 11 shows how the Web wrapper creates
navigators and passes Hlink values to them in this
example. In this figure, a, 3, and v are Web
servers. Navigators are represented by circles. X;
and X5 are sub-automatons associated with the
navigators.

First, the Web wrapper creates a navigator with
the root automaton X;, at Web server a where
a starting web page exists. While obtaining the
paths starting with Hlink value a in the scope of
Web server a, the navigator finds that the paths
referred to by Hlink values d, e, and f must be
checked by automaton X>. Because d refers to
a Web page in Web server 3, and because e and
f refer to a Web page in Web server v, the Web

60f course, we can set some restriction on the navigation
process by specifying time limit or resource consumption
limit. In this paper, we omit the discussion on this.

wrapper dispatches navigators with automaton X,
to 5 and <, and passes the Hlink values to them.
The two navigators check paths in order to obtain
the final result.

Figure 11. Creation of navigators

As mentioned before, each navigator manages
relations to store the paths qualified in the scope
of the corresponding Web server it resides. One
relation is created for each accepting state in a
sub-automaton. Figure 12 shows the relations
managed in the above example. Consider relation
a_X;_B. It is managed by the navigator, with sub-
automaton X, which is dispatched to Web server
a. It stores the set of paths accepted by inter-
mediate accepting state B. Other two relations
(B-X,C and v_X,_C) are managed in a similar
way. Attribute names of the relations fall into two
groups: (1)Those which correspond to labels of
states in sub-automatons, and (2) Join attributes
(X1-X7 in this example). The former attributes
have Hlink values which cause transition into states
annotated with the corresponding labels. Join
attributes have Hlink values which cause transition
into intermediate accepting states (in the case of
the right-most attribute), or values used as starting
Hlink values to compute paths (in the case of the
left-most attribute).

The final result (the set of paths qualified for
the whole path regular expression) is obtained by
joining these relations.

a_X,1_B v X C Final result
A|B|X1-Xa | B-X2.C)'(1_)22 C | A|B|C
a|d d Xq1-X5 | C = : ald|g
ale e d g f ; ale|i
al|f f al|f|i

Figure 12. Relations managed by navigators and
the final result

4 Experiments

In this section, we compare the proposed navigator-
based scheme with the basic scheme in terms of the
amount of data transfer and execution time.

The Web wrapper and the navigator have been
written in Java. JDIK1.1.5 is used as the Java
virtual machine. Apache 1.2.6 is used as the
Web server. Communication between the Web
server and the Web wrapper/navigator is per-
formed based on HTTP. On the other hand, com-
munication between the wrapper and the naviga-
tor is performed through HORB (Hirano’s Object
Request Broker) 1.3.b1, which provides the Java-
based distributed computing environment [5][6].
We use two computers (Cl and C2) located at

distant places. C1 is at University of Tsukuba,
Ibaraki, Japan, and C2 is at Kanagawa Institute of
Technology, Kanagawa, Japan. They are the same
type of workstations (Sun Ultra 1 with Ultra Sparc
143MHz CPU, and Solaris 2.6). C1 has 64MB
memory and C2 has 32MB memory.

4.1 Experiment Data and Procedure

For the experiments, we construct eight sets of Web
pages. They differ from each other in the total
number of non-root Web pages (50, 100, 200, 400,
800, 1200, 1600, or 2000 pages in each set). In
each set, Web pages form a tree whose height is
three (Figure 13). It has one root page which has
local links to a number of intermediate pages. Each
intermediate page has 49 local links to leaf pages.
Each leaf page has no link.

root page

49 pages

Figure 13. Structure of a set of Web pages

We run the Web wrapper at one site, and
place the Web server and the Web pages in the
other site. Then, we request the Web wrapper
to process Navigate operator applied to a relation
which only contains an Hlink value referring to
the root Web page. The Navigate operator has
the path regular expression A(— .)x — B as its
parameter. Therefore, the result includes all the
paths starting with the root page and ending with
an intermediate page or a leaf page.

The experiments were done under the basic
scheme and the proposed navigator-based scheme
with one navigator (Figure 14). We measured the
amount of data transfer and execution time. The
amount of data transfer was obtained by measuring
the total size of packets which the Web server or
HORB daemon transfers. The execution time was
calculated from the start time and the end time of
Navigate operation. We disabled the caching in the
Web server.

We performed the same experiment in the
following configurations: (a) Site A: C; at Univ.
of Tsukuba, Site B: (3 at Kanagawa Institute
of Technology (b) Sites A and B are exchanged.
There was no significant difference between the two
configurations. The experimental results about the
execution time shown below are the average of the
two configurations.

Site B

Site A Site A —_—
HTI'P H HORB HTTP
Web Wrapper — Web server Web Wrapper Navigator, ,_

. Web pag%
Navrgator-based Scheme S—

Basic Scheme

Figure 14. Experiment schemes

4.2 Results and Discussions
4.2.1 The Amount of Data Transfer

Figure 15 shows the amount of data transfer in
the basic scheme and the navigator-based scheme.
It shows that utilization of the navigator can
considerably reduce the amount of data transfer.
The data transfer in the navigator-based scheme is
only 3.4% of that in the basic scheme on average.

@ with Mavigator
Fwithout Navigator

18000
16000
14000
12000
10000
5000
6000
4000

Amount of Data Transfer (Kbyte)

2000
o fos

&

100200 400

200

1200

1600

2000

The Number of Web Pages

Figure 15. Data transfer cost

4.2.2 Execution Time

Considering difference in the traffic condition of the
network, we measured the execution time in the
daytime and at midnight on weekdays. Each point
in the graphs shows the average of six trials (three
trials each in configurations (a) and (b)).

Daytime Result

Figure 16 shows that the navigator-based scheme
is superior to the basic scheme regardless of the
number of Web pages read from the Web server.
The average reduction in execution time is 30%.

=8~ with Navigator
-Z-without Navigator,

1400
1200
< 1000

800 / /
600 L/ /
400 //
200 //

0100 200 400 800 1200 1600 2000
The Number of Web Pages

Execution Time (g) .

Figure 16. Execution time (in the daytime on
weekday)

Midnight Result

Figure 17 shows that the average reduction at
midnight is 22%, which is smaller than that in the
daytime. The reason is that the network load is
light at midnight compared with the daytime, and
the data transfer takes less execution time.

-a-with Navigator
-C~without Navigator

1200

/
S
0 /
o
o
=

0
100 200 400 1200 1600 2000
The Nurnber of Web Pages

o
b=
<

o
<
<

Execution Time (s)
o
3

r>
S
=3

Figure 17. Execution time (at midnight on
weekday)

Average of Daytime and Midnight Results

Figure 18 shows the average of the above exper-
imental results. The average of reduction rate is

26%.

=~ with Navigator
-0 without Navigator

1000 /
800 / pd
Yy
pd
20 //7
/

0
100 200 400 800 1200 1600 2000
The Number of Web Pages

[~
S
S

Execution Time (s)

.
o
S

Figure 18. Average of daytime and midnight
results

Navigation Referencing a Small Number of
Pages

We also measured the execution time in case that
the number of Web pages read from the Web server
is less than or equal to 10. The data sets used
in this experiment are different from those of the
above experiments. If a data set has n(> 1) Web
pages, it consists of one root page, one intermediate
page, and n — 2 leaf pages. Figure 19 shows the
result. When the number of pages is less than or
equal to 5, the execution time in the basic scheme
is superior to that in the navigator-based scheme.

The reason is that the overhead for dispatching
the navigator is larger than the reduction of page
transfer. The overhead is constant when the same
number of navigators are dispatched. Therefore, as
the number of Web pages grows, the advantage of
navigator utilization becomes more evident.

-o-with Navigator
-~ without Navigator

35

Execution Time (s)
— ro
[5.] N [4;]

The Number of Web Pages

Figure 19. Navigation referencing a small number
of pages

5 Conclusions

In this paper, we have presented design and im-
plementation of a Web wrapper in an integration
environment for the World Wide Web, relational
databases, and structured document repositories.
In particular, we have proposed a sophisticated
scheme which uses distributed agents named nav-
igators to execute Web navigational queries. We
have reported the experimental results in terms of
the amount of data transfer and the execution time.
The results have shown that the navigator-based
scheme can considerably reduce the amount of data
transfer, and that, in many cases, the proposed
scheme is superior to the basic scheme which uses
no navigator.

As shown in the experimental results, differ-
ence in the execution time between the basic and
navigator-based schemes may be affected by the
network load and the number of pages to be
referenced. In order to get good execution time,
we have to construct a dispatching algorithm of
navigators which takes them into account. Also,
if we can speed up internal processing in the Web
wrapper and navigator, the data transfer reduction
caused by navigators would contribute more to the
execution time reduction.

In the experiment, we used only one Web server
(and only one accompanying navigator). When
more Web servers are involved in navigational
queries, the proposed scheme is expected to work
better, since parallel processing of navigators is
possible.

Future research issues include evaluation of the
proposed scheme in situations where (1) multiple

Web servers exist and (2) real Web sites are
involved. They also include utilization of other
mechanisms for agent dispatching and communi-
cation, such as servlets [18]. This is important in
terms of applicability’ and security®. Improvement
of the navigation algorithm is another important
issue. For example, we need to develop dynamic
dispatching algorithms incorporating factors such
as network load, and consider optimization of
traversing order of paths. These issues will be
discussed in forth-coming papers.

Acknowledgement

The authors are grateful to Takayuki Suzuki, Kna-
gawa Institute of Technology, for his support in
our experiment. This work was supported in part
by the Ministry of Education, Science, Sports and
Culture, Japan through the Grand-in-Aid for Sci-
entific Research (#08244101, #09680321), and by

the Telecommunications Advancement Foundation.

References
[1] S. Abiteboul and V. Vianu. “Queries and Computation
on the Web,” Proc. 6th Intl. Conf. on Data Theory
(ICDT’97), pp 262-275, 1997.

[2] P.Buneman, S. B. Davidson, K. Hart, and C. Overton.
“A Data Transformation System for Biological Data

Sources,” Proc. 21st VLDB Conf., pp. 158-169, 1995.

[3] A. K. Elmagarmid and C. Pu, (eds.). “Special Issue on
Heterogeneous Databases,” ACM Computing Survey,
vol. 22, no. 3, 1990.

[4] Mary F. Fernandez and Daniela Florescu and Jaewwoo
Kang and Alon Y. Levy and Dan Suciu. "STRUDEL:
A Web-site Management System”, Proc. SIGMOD
Conference, pp. 549-552, Tucson, May 1997.

[5] S.Hirano. “HORB Home Page,” http://ring.etl.
go.jp/openlab/horb-j/WELCOME.HTM.

[6] S.Hirano. “HORB: Distributed Execution of Java Pro-
grams,” Proc. Intl. Conf. on Worldwide Computing
and It’s Applications 97 (WWCA’97) Tsukuba, pp.

29-42, Mar. 1997.

[7] A. R. Hurson, M. W. Bright, and S. Pakzad, (eds.).
“Multidatabase Systems: An Advanced Solution for
Global Information Sharing,” IEEE Computer Society
Press, 1994.

[8] K. Katoh, A. Morishima, and H. Kitagawa. “Inte-
gration of Heterogeneous Information Sources with
WebNR/SD — Design and Development of a Query
Processing Scheme for WWW —” Proc. 56th Na-
tional Convention on Information Processing Society

of Japan (IPSJ), pp. 252-253, Mar. 1998 (in Japanese).

[9] D. Konopnicki and O. Shmueli. “W3QS: A Query
System for the World-Wide Web,” Proc. VLDB Conf.,
pp. 54-65, 1995.

[10] L. Lakshmannan, F. Sadri, and I. Subramanian. “A
Declarative Language for Querying and Restructuring
the Web,” Proc. 6th Intl. Workshop on Research

Issues in Data Eng. (RIDE’96), Feb. 1996.

7Currently, servlets are supported by many types of Web
servers.

8 Although what navigators do to web site resources is
only to “read” web pages through HTTP, HORB allows
inappropriate access to resources if navigators have im-
plementation errors. In contrast, behavior of servlets can
be explicitly limited by configuration files of Web servers.
Therefore, Web server site administrators can protect their
sites.

(1]

(12]

(14]

[15]

A. Morishima and H. Kitagawa. A Data Model-
ing and Query Processing Scheme for Integration
of Structured Document Repositories and Relational
Databases,” Proc. 5th Intl. Conf. on Database Systems
for Advanced Applications (DASFAA’97), pp. 145
154, Melbourne, Apr. 1997.

A. Morishima and H. Kitagawa. ”Integrated Query-
ing and Restructuring of the World Wide Web and
Databases,” Proc. Intl. Symp. on Digital Media Infor-
mation Base (DMIB’97), pp. 261-271, Nara, Japan,
Nov. 1997.

A. Morishima, and H. Kitagawa. “NR/SD—i— Data
Model and Its Query Procesing — For Integration
of Structured Documents and Relational Databases,”
Trans. Information Processing Society of Japan
(IPSJ), Vol. 39, No. 4, pp. 954-967, Apr. 1998 (in
Japanese).

A. O. Mendelzon and T. Milo. “Formal Models of
Web Queries,” Proc. 16th ACM PODS’97, pp. 134-
143, 1997.

A. O. Mendelzon, G. A. Mihaila, and T. Milo. “Query-
ing the World Wide Web,” Proc. Symp. on Parallel
and Distributed Information Systems (PDIS’96), pp.
80-91, Dec. 1996.

Y. Papakonstantinou, H. Garcia-Molina, and J.
Widom. “Object Exchange Across Heterogeneous In-
formation Sources,” Proc. 11th DE Conf., pp. 251-260,
Mar. 1995.

Mary Tork Roth and Peter M. Schwarz. ”Don’t Scrap
It, Wrap It! A Wrapper Architecture for Legacy Data
Sources”, Proc. VLDB Conf., pp. 266-275, Athens,
Greece, 1997.

Sun Microsystems, Inc. “Servlets,” http://jserv.
javasoft.com/products/java-server/servlets/
index.html.

G. Wiederhold. “Mediators in the Architecture of

Future Information Systems,” IEEE Computer, pp.
38-49, Mar. 1992.

