
AN EXAMPLE-BASED WEB-SITE CONSTRUCTION TOOL
AND ITS IMPLEMENTATION

Atsuyuki Morishima
Dept. of Info. Sci. and Eng.

Shibaura Inst. of Tech.
Saitama, Saitama, Japan

amori@sic.shibaura-it.ac.jp

Takanori Mouri
Doctoral Program in Sys. and Info. Eng.

Univ. of Tsukuba
Tsukuba, Ibaraki, Japan

tmouri@kde.is.tsukuba.ac.jp

Hiroyuki Kitagawa
Inst. of Info. Sci. and Elec.

Univ. of Tsukuba
Tsukuba, Ibaraki, Japan

kitagawa@is.tsukuba.ac.jp

Abstract

This paper presents the design and implementation of a
novel tool to construct data-intensive Web-sites based on
information sources. The key idea is to show the system
some examples of Web pages and let it infer how to con-
struct the entire Web-site. The problem is challenging,
because the system allows XML to be one of informa-
tion sources. Because XML data is semistructured, it is a
non-trivial task to infer the intended operation from given
examples. Another feature of the system is that it outputs
XQuery queries, so that it can work with general XQuery
engines.

Key Words: Web Publishing, XML, Authoring Tools,
XQuery

1. Introduction

Today, Web publishing of data stored in information
sources is indispensable in industries. While most of
the information sources are relational databases, it is no
doubt that XML is going to be one of the important in-
formation sources for data-intensive Web-sites, as XML
has become the de facto format for data exchange and
archive. A lot of techniques have been proposed in this
area. For example, Web-site management systems such
as Strudel [3] can create various web-views of hetero-
geneous information sources, based on a semistructured
data model.

Technically, Web publishing requires two types of
tasks, i.e., extraction of data from information sources
and design of Web pages into which the data is incorpo-
rated. Accordingly, existing techniques and frameworks
provide users with two different types of tools, and users
have to learn and use the two types of tools for Web-site
construction. In typical cases, users use text editors to
write SQL-style queries for data extraction and drawing
tools to design Web pages.

This paper explains a novel Web-site construction
tool named AQUA (Amalgamation of QUery and Au-
thoring). AQUA helps users construct data-intensive
Web sites based on XML repositories in a very intuitive
fashion. The key idea is to show the system how to con-
struct some examples of Web pages and let it infer how to
construct the entire Web-site. So AQUA looks like just a
common authoring tool for HTML and SMIL [8] pages:
Users are only required to drag and drop data objects for

Web page authoring. The difference is that the authoring
task implicitly specifies the entire Web-site construction
process.

This problem is challenging, because we allow data
in the data repositories to be XML, and inferring (gener-
alizing) the intended operations is a non-trivial task. In
relational databases, the data structure is regular and ex-
plicit, so domains of data objects are fixed in advance.
QBE [10] and other QBE-style query languages are de-
signed based on the property. However, XML is a type of
semistructured data [1][2], and the data structure is often
irregular and implicit. In our framework, the domain is
defined dynamically according to the user’s interaction
with the system

We developed a prototype system [6], and found
through experiments that even users without any knowl-
edge on database-related concepts (such as database
schemas, SQL-style queries and path expressions) can
construct fairly complex Web-sites from a collection of
XML documents, by following their intuitions.

A key feature of AQUA from the implementation
aspect is that it can work with ordinary XQuery [9] en-
gines. Because XQuery is becoming a standard query
language for XML we expect that we will be able to get
a number of robust and efficient XQuery engines. AQUA
can be used as an easy-to-use Web-publishing tool for
XML documents managed by XQuery engines, without
any special requirements.

In this paper we explain the system’s overview and
its implementation. As we will see, it is not a straightfor-
ward task to develop a practical system that works with
general XQuery engines. We explain our solutions.

2. Running Example

We assume that we have information on musicians and
songs in an XML repository. The repository contains
the following three documents (Fig. 1): (1) A song-
information document, that has a list of song titles,
artists, and video-clips (Fig. 1 (a)). (2) A music-label
document that has a list of music labels with their lists
of artists (Fig. 1(b)). We assume that the document is
semistructured data. Fig. 2 shows the tree representa-
tion of a part of data in the example scenario, where the
two subtrees in the dotted boxes correspond to two kinds
of XML elements for music label information; one has a
flat list of artist elements, and another artist ele-
ments grouped by genre. We explain Fig. 2 later in de-
tail. (3) An artist-profile document, that contains a list of

A-Music

B-Records

Mike
Paul

John

Music label document Artist profile docment

Artist List

Mike Info
John Info
Paul

WWW

IndexPage Multimedia Pages

(HTML) (SMIL)

(c)

(d)(e)

(a) Song Info. document (b)

AQUA

XML Repository

A-Music
 This week

 New CD ...1

title Sukiyaki
 artist Paul
 . . .

title Peace
artist Mike
videoclip

 John

Profile
News

 Mike
This week New CD...News

Profile

 New album ...

debut 2000 ...

...

1

Figure 1. Example scenario

PAGE.1

D.2

artist.2artist.1

PAGE.2

D.3

PAGE.1 PAGE.2

"Mike"

name.1

"Mike"
debut.1

"2000"

"Paul"

&11

&10

&12

&42

l-name.1

"A-Music"

PAGE.3

profile.1

label.1

D.1

PAGE.1

PAGE.2

artist.1

"Mike"

title.1

"Peace"

videoclip.1

&2
&3

song.1

artists.1

artist.2

"John"

&27
jazz.1

l-name.1

"B-Records"

"George"

artist.1

label.1

artists.1

&28

news.1

"This week"

birthday.1

"1973/5/1"

&44

&43

1

&29

(a) (b)

artist.2

"Thomas"

&13

artist.1

Figure 2. Tree representaion of data

artists (Fig. 1(c)). The information includes their names,
the news on the artists, and profile information including
their debut years.

The requirement here is to construct a Web-site,
that has one Multimedia Web page (in SMIL) for each
artist that made his debut in 2000 (Fig. 1(d)), and the
index page for them (Fig. 1(e)).

3. The AQUA system
The system provides users with the following two types
of windows for interaction:
DataBox: A DataBox is used to display data. Fig.3
shows DataBoxes in the running example. A DataBox
shows a page at a time. In Fig. 3, a page corresponds
to one of the followings1: (1) A song element (cf. Fig.
2) having information on a song (1 is a reference to the
video file), (2) a label element, and (3) an artist el-
ement. The user can click the Next and Previous buttons
to browse other pages.
Canvas: The Canvas is a blank window onto which the
user can drop data objects from DataBoxes.

3.1 Examples and Target Sets

Fig. 4 is a simple operation example2. Drag-and-Drop
(D&D) is denoted by the dotted-lines. Here, we refer to

1The user can specify which element corresponds to a page.
2In the figure, multiple pages are shown simultaneously in a

DataBox for explanation purposes. In reality, the Next and Previous
buttons are used to view them.

 Name: Song Page

Previous Next

<song>
 <title>Peace</title>
 <artist> Mike</artist>

</song>

(a) DataBox1:D1 (Song Info)

 Name: Label Page

(b) DataBox2:D2 (Music Label Info)

 Name: Artist Page

(c) DataBox3:D3 (Artist Info)

<name>Mike</name>
<news>This weeks new CD</news>

<label>

<artist>Mike</artist>
<artist>Paul</artist>

<l-name>A-Music</l-name>
<artists>

</artists>
</label>

<profile>
 <debut>2000</debut>
 <birthday>1973/5/1</name>
 </profile>

<artist>

</artist>

Example
Another
Clue

1

PreviousPrevious NextNext

(d)
<artist>Thomas</artist>

<video-clip> </video-clip>

Figure 3. DataBoxes and a pop-up Menu

Mike

A-Music

John

B-Records

A-Music Mike A-Music

DataBox Canvas Result

Mike John B-Records

Example Target Set of the Example

Drag and Drop

Figure 4. Manipulation of an example

the item being dragged and dropped as an object. XML
elements and contents within the elements are objects.
Objects dropped onto the Canvas appear in the result.

An example is denoted by the oval. The user can
designate an object as an example by selecting the “Ex-
ample” item on the pop-up menu (Fig. 3(d)) before the
D&D operation.

An example has its target set, which is the set of
objects the example represents. Manipulation of an ex-
ample is interpreted as manipulation of the objects in its
target set. Objects in a target set are highlighted in each
DataBox.

As a default, the target set is defined as a set of ob-
jects that appear ‘at the same position’ on their pages as
the example object. For example, in Fig. 3, the target
set would be the set of artists’ names in the artist-profile
pages. “Another” and “Clue” menu items are used to
modify the set.

The regular expression (‘Example’ (‘Another’ |
‘Clue’)∗ | ‘D&D’)∗ shows the operation procedure in the
AQUA system. Here, ‘Example,’ ‘Another’ and ‘Clue’
mean selections of respective menu items on an object.
Intuitively, the system allows any combinations of the
following operation patterns: (a) To designate an object
as an example, and accept the default target set. (b) To
designate an object as an example, and change the de-
fault target set by successive ‘Another’ and ‘Clue’ opera-
tions. (c) To drag-and-drop a non-example object (an ob-
ject that the user did not designate as an example) onto
the Canvas. In this case, only the object appears in the
result. (d) To drag-and-drop an example object onto the
Canvas.

If ‘Another’ operation is performed after ‘Example’
operation, the target set of the example is extended to
include the ‘Another’ object and other objects that the
system infers should be included into the target set. In-
tuitively, the system tries to generalize the relationship
between the position of the example and that of the ‘An-
other’ object, and includes all the objects having the gen-
eralized relationship with the example into the target set.

After ‘Example’ operation, the user can choose an-
other object and perform ‘Clue’ operation on it. The ob-

Mike

A-Music

John

B-Records

Mike A-Music Mike A-Music John B-Records

DataBox Canvas
Result

S-Association

A

B

Figure 5. S-Association between A and B

Mike John

A-Music B-Records
Mike

This week...

Mike

This week...

DataBox 1 Canvas
Result

Mike John

This week... New album...

A-Music
A-Music

John

B-Records

New albumV-Association

S-Association

S-Association

A

B

C

D

DataBox 2

Figure 6. V-Association between A and C

ject is used to make the size of the example’s target set
smaller, by serving as a selection condition. For example,
if he specifies ‘Clue’ operation on Mike’s <debut> ele-
ment and enters the condition “=2000,” the Mike’s target
set is reduced to contain only the artists who made their
debut in 2000.

3.2 Associations

When the user specifies multiple examples (and their tar-
get sets), there are usually associations among them. If
an association occurs among target sets, only particular
combinations of objects are qualified to be manipulated.
Therefore, an association serves as a kind of join condi-
tion. Our framework supports two types of associations:
Structural Association (S-Assoc.) Two examples have
an S-Assoc. when their positions have some special re-
lationship. One of the simplest cases is that two different
examples on the same page imply an S-Assoc. Suppose
that the user wants to restructure pages in the DataBox in
Fig. 5 so that the name and the music label are arranged
side by side. If the user takes examples as in Fig. 5, an
S-Assoc. is implied and he gets the intended result. In
contrast, if he specifies ‘John’ as an example for target set
A, the system considers that there is no S-Assoc. There-
fore, the system outputs the Cartesian product ({(Mike,
A-Music), (Mike, B-Records), (John, A-Music), (John,
B-Records)}) of the two target sets.
Value Association (V-Assoc.) Two examples have a V-
Assoc. when their values are the same. Suppose that we
have two DataBoxes (Fig. 6), and that the user wants a
set of pages, each of which contains an artist’s name, the
music label, and the news. If the user takes examples
like those in Fig. 6, a V-Assoc. occurs and he gets the
intended result. (Note that target sets A and B have S-
Assoc., and so do target sets C and D.) If he specifies
‘John’ as an example for target set C, no V-Assoc. occurs
and the system computes Cartesian product. The result
would be { (Mike, A-Music, This week...), (Mike, A-
Music, New album...), (John, B-Records, This week...),
(John, B-Records, New album...)}.

Query

HTML

 Name: Label Page

Back Forward

(b) DataBox2:D2 (Music Label Info)

 Name: Artist Page

Back Forward

(c) DataBox3:D3 (Artist Info)

<name>Mike</name>
<news>This weeks new CD</news>

<label>

<artist>Mike</artist>
<artist>Paul</artist>

<l-name>A-Music</l-name>
<artists>

</artists>
</label>

<profile>
 <debut>2000</debut>
 <member>1973/5/1</member>
</profile>

<artist>

</artist>

Mike

SMIL

A-Music

This week
new CD ...

*
*

1

2

3

5

6

10

10

11

<artist>Thomas</artist>

9

 Name: Song Page

Previous Next

<song>
 <title>Peace</title>
 <artist> Mike</artist>

</song>

(a) DataBox1:D1 (Song Info)

1
<video-clip> </video-clip>

9

7

8

1

4

Figure 7. Manipulation for the scenario

4. Web-site Construction by Example

Fig. 7 illustrates the operation sequence to get the re-
quired result in the example scenario given in Sec. 2.
We assume here that DataBoxes D1, D2, D3 contain the
song-info. document, the music-label document, and the
artist-profile document, respectively. <a> and <n> are
abbreviations for <artist> and <name>, respectively.

(1) Open the Canvas and declare construction of an
HTML page. (Then, the system opens a space for
the HTML page on the Canvas.) (2) Designate
‘<a>Mike’ in D2 as an example (we call it e1

here). The default target set includes artist names which
appear first in music-label pages having the structure
shown in Fig. 2(a). Next, specify that ‘<a>Paul’
(called a11) in D2 is an ‘Another’ object. Then, press
the Next button of the DataBox D2 to find another page
that has the structure shown Fig. 2(b), and specifies that
some artist (in this case ‘<a>John’) (a12) is an
‘Another’ object. The system uses rules to generalize the
relationship among positions of e1, a11, and a12, so that
the target set of e1 is extended to include all the artist
names. (3) D&D e1 from D2 onto the Canvas. (4) Put
a repetition mark (*) on ‘Mike’ on the Canvas. As a
result, all the artists are listed in this page. Otherwise,
a new page is produced for each artist. (5) Designate
the ‘<n>Mike</n>’ object (e2) in D3 as an example.
Note that the two target sets of e1 and e2 have V-Assoc.
Therefore, this specifies an equi-join between their tar-
get sets. (6) Then designate the <debut> element in
D3 (c2) as the ‘Clue’ example for e2, and enter the con-
dition “=2000” so that the target set of e2 includes only
the names of artists who made their debut in 2000. (7)
Declare construction of a SMIL page. The system opens
a space for the SMIL page on the Canvas. (8) Connect a
hypertext link from the HTML page to the SMIL page.
(9)Designate the ‘<a>Mike’ element (e3) and the
video-clip (e4) in D1 as examples. D&D e4 onto the Can-
vas. (10)Designate the <l-name> element (e5) in D2
and the <news> element (e6) in D3 as examples. D&D
them onto the Canvas. (11) Put the repetition mark (*) on
the dropped video-clip. As a result, all of his video-clips
are grouped and sequentially rendered in the same page.
Otherwise, a new page is produced for each video clip.

5. Inside AQUA

This section explains how AQUA constructs Web-sites
based on the user’s interaction with the system.

As shown in Fig. 2, the system models the data
as an object tree. Every node (object) is annotated with
a label, which consists of a label name and a label
number. Label numbers are sequentially assigned to
sibling nodes with the same label name. Every object
has an OID. Several OIDs are explicitly presented in
the form of &n for explanatory purposes. path(o) de-
notes the path from the root to the object o. For ex-
ample, path(&11) =D.2→PAGE.1→label.1 →artists.1
→artist.1.

5.1 Computation of Candidate Sets
The system first computes candidate sets for example ob-
jects. Given an example e, e’s candidate set (CSe) is de-
fined as follows:

CSe = {o|o ∈ O ∧ C-Prede(o)},

where O is the set of all the objects in the object tree,
and C-Prede(o) is a candidate predicate incorporating a
path expression. A path expression is similar to a path but
may contain wildcards. C-Prede(o) holds if and only if
path(o) conforms to the path expression. C-Prede(o) is
determined by the ‘Example’ and ‘Another’ operations
as shown below.
Example: The following CS&11 gives the candidate set
specified by Operation (2) in Sec. 4.

CS&11 = {o| o ∈ O ∧ D.2→PAGE.?〈PAGE.1〉 →label.1
→artists.1→*〈ε〉
→artist.?〈artist.1〉[o〈<a>Mike〉]}.

The portions surrounded by “〈” and “〉” are
annotations. Ignoring them, the path expression
is D.2→PAGE.?→label.1→artists.1→*→artist.?.
Given the source data shown in
Fig. 2, CS&11 = {“<a>Mike”,
“<a>Paul”, “<a>Thomas”, . . .
“<a>John”, “<a>George”, . . .} (all artists of
all the music labels).

The annotations give information on path(e) and
value(e), that are used to derive the predicate. (In this
case, path(&11) and value(&11). ε denotes the null
sequence.)

In general, the C-Prede(o) is derived as follows:
(1) First, when the user specifies that the object e

is an example, the default candidate predicate p[o〈v〉]
is derived. Here, p is the same as path(e) except that
its PAGE.i is replaced by PAGE.?〈PAGE.i〉, and v is
value(e). For example, consider Operation (2) in Sec.
4. When the user specifies the object &11 (with its value
“<a>Mike”) as an example, the default candidate
predicate derived is D.2→PAGE.?〈PAGE.1〉→ label.1→
artists.1→ artist.1[o〈<a>Mike〉]. The predicate
defines the set of objects appearing at the same position
on different pages.

(2) An ‘Another’ operation modifies the candidate
predicate to accept the ‘Another’ object. The system has

Example
Target Set
S-Association
V-Association

Mike

John

John John

Mike

Mike

D1 D2

D3

A-Music

B-Records

1

2

4

This week ...
New album...

Paul3 Paul

World Tour... Paul

Figure 8. Target sets and associations

Ex.Mike
in D1

Ex.
1

in
D1

Ex.Mike
in D2

Ex.
A-Music
in D2

Ex.Mike
in D3

Ex.
This week...
in D3

Mike 1 Mike A-Music Mike This week...

Mike 2 Mike A-Music Mike This week...

Paul 3 Paul A-Music Paul World Tour...

John 4 John B-Records John New album...

Figure 9. Target relation

a set of rules [5] that modifies the candidate predicate,
according to the given ‘Another’ example a. The basic
idea behind the rules is to place a wildcard at the position
where path(e) (the path incorporated as the annotation in
the candidate predicate) and path(a) conflict with each
other.

For example, in Operation (2), the user specifies
the object &12 (with its value “<a>Paul”), and
the object &28 (with its value “<a>John”) as two
‘Another’ objects. The system matches and generalizes
the three paths from the root to three objects (Fig. 2), and
outputs the predicate in the above CS&11.

5.2 Target Sets, Target Relation, and the
Web-site

Target set TSe of an example e is defined based on the
Target relation. So we define the target relation first. In-
tuitively, a target relation TR represents the target sets
of examples and the associations among them. It is de-
fined as TR = σp0(CS1 �p1 . . . �pn−1 CSn) where
p0 represents selection conditions specified in ‘Clue’ op-
eration, and pis are join conditions representing associ-
ations. For example, v-associations are represented by
value(e1) = value(e2) which means that values of ob-
jects e1 and e2 are the same. Fig. 9 shows TR based
on Fig. 8. Then, the target set TSe for an example e is
defined as follows:

TSe = πattr(CSe)(TR)

where attr(CSe) denotes the attribute in TR corre-
sponding to e.

Then, the system applies the Nest and Projection
operator [4] to TR, based on the position of repetition
marks (*) on the Canvas. In the example in Fig. 7, the
following expression produces the nested relation shown
in Fig. 10.

ν
V =(1)

(π
Mike, 1 ,A−Music,Thisweek..

(TR))

V
Ex.Mike
in D1 Ex. 1 in D1

Ex.A-Music
in D2

Ex.
This week... in D3

1

Mike 2 A-Music This week..

Paul 3 A-Music World Tour..

John 4 B-Records New album..

Figure 10. Result nested relation

DataBox
Manager

Canvas
Manager

CanvasDataBoxDataBox

AQUA System

Matching Patterns,
Selection/Join Conditions

Site
Templete

Site
Constructor

Query
Generator

XQuery

Grouping
 Information

XQuery Engine

XML

XML
Repository

AQUA Interface

Web SiteUser

Object
Object

Drag and Drop

Internal
XML Engine

Figure 11. System architecture

The system outputs the result as a set of Web pages (Fig.
1(d)(e)).

6. Implementation

Fig. 11 shows the architecture of the AQUA system.
Users communicate with the system through GUI com-
ponents, namely, DataBox and Canvas. After a user
drag-and-drops data objects from the DataBoxes to the
Canvas in order to show the system some example Web
pages, the DataBox Manager produces matching patterns
(candidate predicates) and selection/join conditions (as-
sociations) against the underlying data, based on users’
interaction with DataBoxes. The Canvas Manager pro-
duces grouping information and site template. The
matching patterns, selection/join conditions and group-
ing information are fed into the query generator to pro-
duce an XQuery query. The internal XML engine is used
to compute target sets. (Details are explained in Subsec.
6.2.) The site constructor embeds the query result from
the XQuery engine into the site template and produces
the result Web-site.

The system (Fig. 12) is implemented in Java (Java2
SDK1.3) and utilizes its drag and drop API. The code
is about 21,000 lines. Quip [7] is used as an XQuery
engine.

6.1 Query Generation

The AQUA system generates an XQuery query that com-
putes the nested relation (in an XML format) explained
in Sec. 5. The translation is always possible, because

Figure 12. AQUA prototype system

let $TR := <result>{
for $p1 in //D1/PAGE/song,

$o1 in $p1/artist, $o2 in $p1/video-clip,
$p2 in //D2/PAGE/label,
$o3 in $p2/l-name, $o4 in $p2/artists//artist
$p3 in //D3/PAGE/artist,
$o5 in $p3/name, $o6 in $p3/news,
$o7 in $p3/profile/debut

where $o1=$o3 and $o1=$o5 and $o7=2000
return <tr><o2>{$o2}</o2><c><o3>{$o3}</o3>

<o4>{$o4}</o4><o6>{$o6}</o6></c></tr>
}</result>
let $result := <result>{
for $ta in distinct-values($TR//tr//c)
return <item>{$ta/o4}{$ta/o3}{$ta/o6}<rep>{
for $tb in $TR//tr
where $ta = $tb//c
return <item>{$tb/o2}</item>

}</rep></item>
}</result>
return $result

Figure 13. Generated query

the expressive power of XQuery includes path naviga-
tion, joins, and the Nest operation. One possible way to
implement the computation in XQuery is to use nested
for clauses and a where clause to construct the target
relation, and then use nested subqueries to implement the
Nest operation.

Fig. 13 shows the XQuery query that computes the
nested relation shown in Fig. 10. (document, data, and
text functions are omitted.) S-Associations are imple-
mented by variables that keep least-common-ancestors
of those objects that are associated with one another. For
example, $p2 is used to guarantee that the query makes
correct pairs of an artist ($o4) and a l-name ($o3).

6.2 Problems and Our Solutions

Although the algorithm is well-defined at the data model
level, it is not straightforward to construct a practical sys-
tem based on it. As explained in Sec. 3., the system has
to highlight objects in an inferred target set in order to
ask the user to check if the target set is correct. Each
time to compute objects in the target set, the system has
to execute a query against the entire data instance, as ex-
plained in Subsec. 5.2. We have to implement the query
in XQuery, but there are problems on performance and
OIDs:

(A) Performance. The computation of target sets re-
quires a global processing of data; The system has to
scan the entire document in general, which can results
in a long processing time to obtain target sets. This is
undesirable, because the system provides a user interface
where the response time is critical.

An important observation is as follows: We do not
need the entire target set at the same time because what
we can see in a DataBox is a small portion of data.
The system takes advantages of this property. For ex-
ample, assume that (1) the XPATH for a target set is
/labels/label/l-name, (2) a page corresponds to
a label element, and (3) the DataBox shows the third
page now. Then, the system re-writes the XPATH in a
query into /labels/label[3]/l-name. This ad-
ditional condition leads to a very small result in general,
and gives the XQuery engine a possibility of finding ef-
ficient plans.

(B) OID Problem. The data model assumes that all ob-
jects have OIDs. While the XQuery’s semantics also as-
sumes the property, OIDs are implicit, i.e., the result of
the XQuery query has no explicit OIDs. Therefore, the
system cannot know which objects in a DataBox are con-
tained in the query result, because it is possible that more
than one object in a DataBox have the same value.

The internal XML query engine in Fig. 11 is used
to connect objects in the result from XQuery engines to
the objects shown in a DataBox. This is done as fol-
lows: Remember that the target relation TR is the re-
sult of join of candidate sets based on associations (i.e.,
TR = σp0(CS1 �p1 . . . �pn−1 CSn)). Assume that we
want to know which objects in a DataBox are contained
in TSk = πattr(CSk)(TR) (the target set of example ek).
First, we define TRs−assoc∗

k as follows:

TRs−assoc∗
k = CSk1 �pk1

. . . �pkm−1
CSkm

where CSki
is a candidate set whose example is reach-

able from ek through S-Associations. In Fig. 8, if
ek is “Mike” in D2, involved are the candidate sets
for ek itself and “A-Music.” Note that TSk ⊆
πattr(CSk)(TRs−assoc∗

k) because TSk considers other
associations and selection conditions. The idea here
is to use the internal engine to (1) assign temporary,
unique OIDs (none of which are the same) to objects in a
DataBox (Fig. 14 (left)), (2) compute TRs−assoc∗ with
the OIDs (Fig. 14 (right)), and (3) join the result with
TR computed by the outside XQuery engine. We can
get the set of (temporary) OIDs in TSk (in the example,
{&2, &3}) with the following query:

πoidk
(πoidk,c(TRs−assoc∗

k) �c πc(TR))

where the underlined sub-expression is computed by the
outside XQuery engine, and c is the set of attributes that
are used as join conditions between TRs−assoc∗ and TR.
The framework works, because the TRs−assoc∗ is con-
nected to TR only through V-Associations. Note that
the cost to compute TRs−assoc∗

k is relatively small and
so are the size of πoidk,c(TRs−assoc∗

k) and πc(TR), be-
cause we can use the technique explained in Problem (A).

 Name: Label Page

<label>

<artist>Mike</artist>
<artist>Paul</artist>

<name>A-Music</name>
<artists>

</artists>
</label>

<artist>Thomas</artist>

Ex.Mike Oid1 Ex.A-Music Oid2
Mike &2 A-Music &1
Mike &2 A-Music &1
Paul &3 A-Music &1
Thomas &4 A-Music &1

Figure 14. Object identification mechanism

7. Conclusion

This paper has explained a novel tool for construction of
data-intensive Web sites. It is unique in that unlike other
tools, it requires users to show the system some exam-
ples of Web pages, and tries to infer his intention and
construct the entire Web site. This is a non-trivial task,
because the system can cope with XML (semistructured)
data. The paper also explains the implementation. A key
feature is that the system can work with general XQuery
engines, exploiting the possible robust and efficient per-
formance. We have explained mechanisms to cope with
problems that arise when we want to implement a practi-
cal system. Future works include development of mech-
anisms to support (1) dynamic Web sites and (2) reuse of
the past operations.

References
[1] S. Abiteboul. Querying semi-structured data. Proc.

6th International Conference on Data Theory
(ICDT’97), pp. 1-18, 1997.

[2] Peter Buneman. Semistructured data. Proc. 16th
ACM Symposium on Principles of Database Sys-
tems (PODS’97), pp. 117-121, 1998.

[3] M. Fernandez, D. Florescu, J. Kang, A.
Levy, and D. Suciu. Catching the Boat with
Strudel:Experiences with a Web-Site Management
System. Proc. ACM SIGMOD’98, pp.414-425,
1998

[4] P. C. Fischer and S. J. Thomas. Operators for non-
first-normal-form relations. Proc. IEEE COMP-
SAC83, pp. 464-475, 1983.

[5] A. Morishima, S. Koizumi and H. Kitagawa. Drag
and Drop: Amalgamation of Authoring, Querying,
and Restructuring for Multimedia View Construc-
tion. Proc. 5th IFIP 2.6 Working Conference on Vi-
sual Database Systems(VDB5), pp. 257-276, 2000.

[6] A. Morishima, S. Koizumi, H. Kitagawa, and S.
Takano. Enabling End-users to Construct Data-
intensive Web-sites from XML Repositories: An
Example-based Approach. Proc. 27th VLDB Conf.,
pp. 703-704, 2001.

[7] Software AG. QuiP. http://www.softwareag.com/.
[8] W3C. Synchronized Multimedia Integration Lan-

guage(SMIL). http://www.w3c.org/AudioVideo,
2002.

[9] W3C. XQuery 1.0: An XML Query
Language. X3C Working Draft,
http://www.w3.org/TR/xquery, 2002.

[10] M. M. Zloof. Query-by-Example: a Data Base Lan-
guage. IBM Systems Journal, Vol. 16, No. 4, pp.
324-343, 1977.

