

Data Intensive Scienceのススメ

National Astronomical Observatory of Japan President of Comm 5, IAU

Masatoshi OHISHI

masatoshi.ohishi@nao.ac.jp

Accelerating Discoveries

- Issues, Planning
- Observation
- Data Reduction
 - Calib., Select,
 Combine, , ,
- Data Analysis
 - Physical Parameters
 - Thinking
 - Solution
- Publish

Data Information Knowledge Understanding Wisdom

Planned Future Astronomy Projects

- ALMA
- JWST
- LSST
- LOFAR
- SKA
- TMT

~ a few PB/yr

Pan-STARRs

• Pan-STARRs ~ a few TB/night , only object params stored

Science Paradigms

<u>.</u>

- Thousand years ago: science was empirical describing natural phenomena
- Last few hundred years: theoretical branch using models, generalizations
- Last few decades: a computational branch simulating complex phenomena
- Today:

data exploration (eScience)

unify theory, experiment, and simulation

- Data captured by instruments
 Or
- Or generated by simulator – Processed by software
- Information/Knowledge stored in computer
- Scientist analyzes database / files using data management and statistics

Data Intensive Science

- Data deluge
 - Huge data size
 - Wide variety
 - Transient data
 - time-domain
- New paradigm in scientific research by introducing data management and advanced data analysis

The FOURTH PARADIGM

DATA-INTENSIVE SCIENTIFIC DISCOVERY

1011110 BY TONY HEY, STEWART TANSLEY, AND KRISTIN TOLLE

Requirements in the Data Intensive Science Era

Data producer side

 Definition of data quality index, and establishment

Data center side

 Establishment of data handling environment

Data management / analysis cost will become a major issue

(from obs. to data analyses)

incl. data mining, knowledge discovery, statistics, event discovery

High-speed network

Data Analysis

- Looking for
 - Needles in haystacks the Higgs particle
 - Haystacks: Dark matter, Dark energy
- Needles are easier than haystacks
- Global statistics have poor scaling
 Correlation functions are N², likelihood techniques N³
- We can only do *N logN*
- Must accept approximate answers New algorithms
- Requires combination of – statistics &
 - -computer science

Analysis and Databases

- Much statistical analysis deals with
 - Creating uniform samples –
 - data filtering
 - Assembling relevant subsets
 - Estimating completeness
 - Censoring bad data
 - Counting and building histograms
 - Generating Monte-Carlo subsets
 - Likelihood calculations
 - Hypothesis testing

- Traditionally performed on files
- · These tasks better done in structured store with
 - indexing,
 - aggregation,
 - parallelism
 - query, analysis,
 - visualization tools.

Accessing Data

- If there is too much data to move around, take the analysis to the data!
- Do all data manipulations at database
 Build custom procedures and functions in the database
- Automatic parallelism guaranteed
- Easy to build-in custom functionality
 - Databases & Procedures being unified
 - Example temporal and spatial indexing
 - Pixel processing
- Easy to reorganize the data
 - Multiple views, each optimal for certain analyses
 - Building hierarchical summaries are trivial databases!
- Scalable to Petabyte datasets

Data Mining (Knowledge Discovery in Database – KDD)

- the process of extracting patterns from data
- currently used in a wide range of profiling practices, such as marketing, surveillance, fraud detection, and scientific discovery

- DM tasks
 - Clustering
 - Classification
 - decision tree
 - nearest neighbor
 - neural networks
 - naïve Bayesian classification
 - support vector machines
 - Regression
 - Association rule learning

Getting Knowledge

- Approaches on Data analyses: mathematical statistics and/or taxonomy
- With scientific working hypothesis what do we want to know from the deluge of data ?
 - We need to have a sensitive antenna
 - Serendipitous discoveries might be possible, but…
- Data publication as early as possible
- Challenging researchers in exploring the deluge of data

Standardization in IVOA

- Contents & access protocol
- Access Images, Spectra, Catalogues
 TAP, SIAP, SSAP, STC, etc.
- Query Language to Federated DBs (ADQL)
- Unified Attribute Names
 - UCD (Unified Contents Descriptions)
- Output format: VOTable (in XML)
 FITS
- Storage Interface (VOSpace)
- Message passing among Apps. (SAMP)

Astronomical Virtual Observatories ~ Data Grid ~

Successful Models on Data Sharing

- 1. Protein Data Banks (PDB)
- 2. OneGeology/CGI model
- 3. Intergovernmental Panel of Climate Change (IPCC)
- 4. International Virtual Observatory (IVOA)

Establishing Standards

- Standards are quite effective
 - Access protocols, data format, etc.
 - Interoperability \rightarrow wider dissemination and application
 - Endorsement by the IAU (VO WG)
- Painful process
 - Philosophy, intention, life time of project,,,
 - Compromise, patience
 - Establishment of relationship: respect to each other
 - Coffee/tea breaks and lunch/dinner talks are crucial

Issues to be considered

More Science-Driven

- Demonstrate scientific merit
 - Publish "product papers" by yourselves
- Select most commonly used functionalities
- Quality Index
 - Toward quality assurance, jointly with observatories
- Young researchers
 - Researchers are VERY conservative !
 - Young researchers tend to show interest to new ones

Users View Point

- Easiness to use
 - self-explanatory
 - Basic functionalities are sufficient
 - Others could be done by a local machine
- Market research
 - Science use cases
 - tutorials
- Novice vs Expert
 - GUI vs CUI
 - Almost no scientists know SQL

For Data providers

Give credit to them

- Hard and invisible to prepare science-ready data

- Easy implementation
 - tool kit
 - avoiding unwanted bugs as possible
- Validation tool prior to publication of data
 - Ensure reliability of the data product

Technology

- Not too early, not too late
- Stability, robustness
 - "doable or not" is the issue
 - Users do NOT care about invisible technology
- Sustainability, support
- Popularity
 - help desk around you
- Platform independency
 - for easy dissemination

Summary

- An era of Data Intensive Sciences has come or will come soon.
- Need to be ready in each domain through establishing domain-specific standards (metadata, data access, data format, and others)
- Statistical analysis would be a must for Data Intensive Sciences
- For sustainability, it is needed to get support from individual research community and funding agencies